Files
podman/libpod/lock/shm/shm_lock.c
Matthew Heon a21f21efa1 Refactor locks package to build on non-Linux
Move SHM specific code into a subpackage. Within the main locks
package, move the manager to be linux-only and add a non-Linux
unsupported build file.

Signed-off-by: Matthew Heon <matthew.heon@gmail.com>
2019-01-04 09:45:59 -05:00

384 lines
10 KiB
C

#include <errno.h>
#include <fcntl.h>
#include <semaphore.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "shm_lock.h"
// Compute the size of the SHM struct
size_t compute_shm_size(uint32_t num_bitmaps) {
return sizeof(shm_struct_t) + (num_bitmaps * sizeof(lock_group_t));
}
// Set up an SHM segment holding locks for libpod.
// num_locks must be a multiple of BITMAP_SIZE (32 by default).
// Returns a valid pointer on success or NULL on error.
// If an error occurs, it will be written to the int pointed to by error_code.
shm_struct_t *setup_lock_shm(uint32_t num_locks, int *error_code) {
int shm_fd, i, j, ret_code;
uint32_t num_bitmaps;
size_t shm_size;
shm_struct_t *shm;
// If error_code doesn't point to anything, we can't reasonably return errors
// So fail immediately
if (error_code == NULL) {
return NULL;
}
// We need a nonzero number of locks
if (num_locks == 0) {
*error_code = EINVAL;
return NULL;
}
// Calculate the number of bitmaps required
if (num_locks % BITMAP_SIZE != 0) {
// Number of locks not a multiple of BITMAP_SIZE
*error_code = EINVAL;
return NULL;
}
num_bitmaps = num_locks / BITMAP_SIZE;
// Calculate size of the shm segment
shm_size = compute_shm_size(num_bitmaps);
// Create a new SHM segment for us
shm_fd = shm_open(SHM_NAME, O_RDWR | O_CREAT | O_EXCL, 0600);
if (shm_fd < 0) {
*error_code = errno;
return NULL;
}
// Increase its size to what we need
ret_code = ftruncate(shm_fd, shm_size);
if (ret_code < 0) {
*error_code = errno;
goto CLEANUP_UNLINK;
}
// Map the shared memory in
shm = mmap(NULL, shm_size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (shm == MAP_FAILED) {
*error_code = errno;
goto CLEANUP_UNLINK;
}
// We have successfully mapped the memory, now initialize the region
shm->magic = MAGIC;
shm->num_locks = num_locks;
shm->num_bitmaps = num_bitmaps;
// Initialize the semaphore that protects the bitmaps.
// Initialize to value 1, as we're a mutex, and set pshared as this will be
// shared between processes in an SHM.
ret_code = sem_init(&(shm->segment_lock), true, 1);
if (ret_code < 0) {
*error_code = errno;
goto CLEANUP_UNMAP;
}
// Initialize all bitmaps to 0 initially
// And initialize all semaphores they use
for (i = 0; i < num_bitmaps; i++) {
shm->locks[i].bitmap = 0;
for (j = 0; j < BITMAP_SIZE; j++) {
// As above, initialize to 1 to act as a mutex, and set pshared as we'll
// be living in an SHM.
ret_code = sem_init(&(shm->locks[i].locks[j]), true, 1);
if (ret_code < 0) {
*error_code = errno;
goto CLEANUP_UNMAP;
}
}
}
// Close the file descriptor, we're done with it
// Ignore errors, it's ok if we leak a single FD and this should only run once
close(shm_fd);
return shm;
// Cleanup after an error
CLEANUP_UNMAP:
munmap(shm, shm_size);
CLEANUP_UNLINK:
close(shm_fd);
shm_unlink(SHM_NAME);
return NULL;
}
// Open an existing SHM segment holding libpod locks.
// num_locks is the number of locks that will be configured in the SHM segment.
// num_locks must be a multiple of BITMAP_SIZE (32 by default).
// Returns a valid pointer on success or NULL on error.
// If an error occurs, it will be written to the int pointed to by error_code.
shm_struct_t *open_lock_shm(uint32_t num_locks, int *error_code) {
int shm_fd;
shm_struct_t *shm;
size_t shm_size;
uint32_t num_bitmaps;
if (error_code == NULL) {
return NULL;
}
// We need a nonzero number of locks
if (num_locks == 0) {
*error_code = EINVAL;
return NULL;
}
// Calculate the number of bitmaps required
if (num_locks % BITMAP_SIZE != 0) {
// Number of locks not a multiple of BITMAP_SIZE
*error_code = EINVAL;
return NULL;
}
num_bitmaps = num_locks / BITMAP_SIZE;
// Calculate size of the shm segment
shm_size = compute_shm_size(num_bitmaps);
shm_fd = shm_open(SHM_NAME, O_RDWR, 0600);
if (shm_fd < 0) {
return NULL;
}
// Map the shared memory in
shm = mmap(NULL, shm_size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (shm == MAP_FAILED) {
*error_code = errno;
}
// Ignore errors, it's ok if we leak a single FD since this only runs once
close(shm_fd);
// Check if we successfully mmap'd
if (shm == MAP_FAILED) {
return NULL;
}
// Need to check the SHM to see if it's actually our locks
if (shm->magic != MAGIC) {
*error_code = errno;
goto CLEANUP;
}
if (shm->num_locks != num_locks) {
*error_code = errno;
goto CLEANUP;
}
return shm;
CLEANUP:
munmap(shm, shm_size);
return NULL;
}
// Close an open SHM lock struct, unmapping the backing memory.
// The given shm_struct_t will be rendered unusable as a result.
// On success, 0 is returned. On failure, negative ERRNO values are returned.
int32_t close_lock_shm(shm_struct_t *shm) {
int ret_code;
size_t shm_size;
// We can't unmap null...
if (shm == NULL) {
return -1 * EINVAL;
}
shm_size = compute_shm_size(shm->num_bitmaps);
ret_code = munmap(shm, shm_size);
if (ret_code != 0) {
return -1 * errno;
}
return 0;
}
// Allocate the first available semaphore
// Returns a positive integer guaranteed to be less than UINT32_MAX on success,
// or negative errno values on failure
// On sucess, the returned integer is the number of the semaphore allocated
int64_t allocate_semaphore(shm_struct_t *shm) {
int ret_code, i;
bitmap_t test_map;
int64_t sem_number, num_within_bitmap;
if (shm == NULL) {
return -1 * EINVAL;
}
// Lock the semaphore controlling access to our shared memory
do {
ret_code = sem_wait(&(shm->segment_lock));
} while(ret_code == EINTR);
if (ret_code != 0) {
return -1 * errno;
}
// Loop through our bitmaps to search for one that is not full
for (i = 0; i < shm->num_bitmaps; i++) {
if (shm->locks[i].bitmap != 0xFFFFFFFF) {
test_map = 0x1;
num_within_bitmap = 0;
while (test_map != 0) {
if ((test_map & shm->locks[i].bitmap) == 0) {
// Compute the number of the semaphore we are allocating
sem_number = (BITMAP_SIZE * i) + num_within_bitmap;
// OR in the bitmap
shm->locks[i].bitmap = shm->locks[i].bitmap | test_map;
// Clear the semaphore
sem_post(&(shm->segment_lock));
// Return the semaphore we've allocated
return sem_number;
}
test_map = test_map << 1;
num_within_bitmap++;
}
// We should never fall through this loop
// TODO maybe an assert() here to panic if we do?
}
}
// Post to the semaphore to clear the lock
sem_post(&(shm->segment_lock));
// All bitmaps are full
// We have no available semaphores, report allocation failure
return -1 * ENOSPC;
}
// Deallocate a given semaphore
// Returns 0 on success, negative ERRNO values on failure
int32_t deallocate_semaphore(shm_struct_t *shm, uint32_t sem_index) {
bitmap_t test_map;
int bitmap_index, index_in_bitmap, ret_code, i;
if (shm == NULL) {
return -1 * EINVAL;
}
// Check if the lock index is valid
if (sem_index >= shm->num_locks) {
return -1 * EINVAL;
}
bitmap_index = sem_index / BITMAP_SIZE;
index_in_bitmap = sem_index % BITMAP_SIZE;
// This should never happen if the sem_index test above succeeded, but better
// safe than sorry
if (bitmap_index >= shm->num_bitmaps) {
return -1 * EFAULT;
}
test_map = 0x1;
for (i = 0; i < index_in_bitmap; i++) {
test_map = test_map << 1;
}
// Lock the semaphore controlling access to our shared memory
do {
ret_code = sem_wait(&(shm->segment_lock));
} while(ret_code == EINTR);
if (ret_code != 0) {
return -1 * errno;
}
// Check if the semaphore is allocated
if ((test_map & shm->locks[bitmap_index].bitmap) == 0) {
// Post to the semaphore to clear the lock
sem_post(&(shm->segment_lock));
return -1 * ENOENT;
}
// The semaphore is allocated, clear it
// Invert the bitmask we used to test to clear the bit
test_map = ~test_map;
shm->locks[bitmap_index].bitmap = shm->locks[bitmap_index].bitmap & test_map;
// Post to the semaphore to clear the lock
sem_post(&(shm->segment_lock));
return 0;
}
// Lock a given semaphore
// Does not check if the semaphore is allocated - this ensures that, even for
// removed containers, we can still successfully lock to check status (and
// subsequently realize they have been removed).
// Returns 0 on success, -1 on failure
int32_t lock_semaphore(shm_struct_t *shm, uint32_t sem_index) {
int bitmap_index, index_in_bitmap, ret_code;
if (shm == NULL) {
return -1 * EINVAL;
}
if (sem_index >= shm->num_locks) {
return -1 * EINVAL;
}
bitmap_index = sem_index / BITMAP_SIZE;
index_in_bitmap = sem_index % BITMAP_SIZE;
// Lock the semaphore controlling access to our shared memory
do {
ret_code = sem_wait(&(shm->locks[bitmap_index].locks[index_in_bitmap]));
} while(ret_code == EINTR);
if (ret_code != 0) {
return -1 * errno;
}
return 0;
}
// Unlock a given semaphore
// Does not check if the semaphore is allocated - this ensures that, even for
// removed containers, we can still successfully lock to check status (and
// subsequently realize they have been removed).
// Returns 0 on success, -1 on failure
int32_t unlock_semaphore(shm_struct_t *shm, uint32_t sem_index) {
int bitmap_index, index_in_bitmap, ret_code;
unsigned int sem_value = 0;
if (shm == NULL) {
return -1 * EINVAL;
}
if (sem_index >= shm->num_locks) {
return -1 * EINVAL;
}
bitmap_index = sem_index / BITMAP_SIZE;
index_in_bitmap = sem_index % BITMAP_SIZE;
// Only allow a post if the semaphore is less than 1 (locked)
// This allows us to preserve mutex behavior
ret_code = sem_getvalue(&(shm->locks[bitmap_index].locks[index_in_bitmap]), &sem_value);
if (ret_code != 0) {
return -1 * errno;
}
if (sem_value >= 1) {
return -1 * EBUSY;
}
ret_code = sem_post(&(shm->locks[bitmap_index].locks[index_in_bitmap]));
if (ret_code != 0) {
return -1 * errno;
}
return 0;
}