//go:build !remote package libpod import ( "context" "errors" "fmt" "io" "net/http" "os" "time" "github.com/containers/common/pkg/resize" "github.com/containers/podman/v5/libpod/define" "github.com/containers/podman/v5/libpod/events" "github.com/containers/podman/v5/pkg/domain/entities" "github.com/containers/storage/pkg/archive" "github.com/sirupsen/logrus" "golang.org/x/sys/unix" ) // Init creates a container in the OCI runtime, moving a container from // ContainerStateConfigured, ContainerStateStopped, or ContainerStateExited to // ContainerStateCreated. Once in Created state, Conmon will be running, which // allows the container to be attached to. The container can subsequently // transition to ContainerStateRunning via Start(), or be transitioned back to // ContainerStateConfigured by Cleanup() (which will stop conmon and unmount the // container). // Init requires that all dependency containers be started (e.g. pod infra // containers). The `recursive` parameter will, if set to true, start these // dependency containers before initializing this container. func (c *Container) Init(ctx context.Context, recursive bool) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } return c.initUnlocked(ctx, recursive) } func (c *Container) initUnlocked(ctx context.Context, recursive bool) error { if !c.ensureState(define.ContainerStateConfigured, define.ContainerStateStopped, define.ContainerStateExited) { return fmt.Errorf("container %s has already been created in runtime: %w", c.ID(), define.ErrCtrStateInvalid) } if !recursive { if err := c.checkDependenciesAndHandleError(); err != nil { return err } } else { if err := c.startDependencies(ctx); err != nil { return err } } if err := c.prepare(); err != nil { if err2 := c.cleanup(ctx); err2 != nil { logrus.Errorf("Cleaning up container %s: %v", c.ID(), err2) } return err } if c.state.State == define.ContainerStateStopped { // Reinitialize the container return c.reinit(ctx, false) } // Initialize the container for the first time return c.init(ctx, false) } // Start starts the given container. // Start will accept container in ContainerStateConfigured, // ContainerStateCreated, ContainerStateStopped, and ContainerStateExited, and // transition them to ContainerStateRunning (all containers not in // ContainerStateCreated will make an intermediate stop there via the Init API). // Once in ContainerStateRunning, the container can be transitioned to // ContainerStatePaused via Pause(), or to ContainerStateStopped by the process // stopping (either due to exit, or being forced to stop by the Kill or Stop API // calls). // Start requires that all dependency containers (e.g. pod infra containers) are // running before starting the container. The recursive parameter, if set, will start all // dependencies before starting this container. func (c *Container) Start(ctx context.Context, recursive bool) error { // Have to lock the pod the container is a part of. // This prevents running `podman start` at the same time a // `podman pod stop` is running, which could lead to weird races. // Pod locks come before container locks, so do this first. if c.config.Pod != "" { // If we get an error, the pod was probably removed. // So we get an expected ErrCtrRemoved instead of ErrPodRemoved, // just ignore this and move on to syncing the container. pod, _ := c.runtime.state.Pod(c.config.Pod) if pod != nil { pod.lock.Lock() defer pod.lock.Unlock() } } return c.startNoPodLock(ctx, recursive) } // Update updates the given container. // Either resource limits, restart policies, or HealthCheck configuration can be updated. // Either resources, restartPolicy or changedHealthCheckConfiguration must not be nil in the updateOptions. // If restartRetries is not nil, restartPolicy must be set and must be "on-failure". // Nil values of changedHealthCheckConfiguration are not updated. func (c *Container) Update(updateOptions *entities.ContainerUpdateOptions) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if c.ensureState(define.ContainerStateRemoving) { return fmt.Errorf("container %s is being removed, cannot update: %w", c.ID(), define.ErrCtrStateInvalid) } healthCheckConfig, changedHealthCheck, err := GetNewHealthCheckConfig(&HealthCheckConfig{Schema2HealthConfig: c.HealthCheckConfig()}, *updateOptions.ChangedHealthCheckConfiguration) if err != nil { return err } if changedHealthCheck { if err := c.updateHealthCheck( healthCheckConfig, &HealthCheckConfig{Schema2HealthConfig: c.config.HealthCheckConfig}, ); err != nil { return err } } startupHealthCheckConfig, changedStartupHealthCheck, err := GetNewHealthCheckConfig(&StartupHealthCheckConfig{StartupHealthCheck: c.Config().StartupHealthCheckConfig}, *updateOptions.ChangedHealthCheckConfiguration) if err != nil { return err } if changedStartupHealthCheck { if err := c.updateHealthCheck( startupHealthCheckConfig, &StartupHealthCheckConfig{StartupHealthCheck: c.config.StartupHealthCheckConfig}, ); err != nil { return err } } globalHealthCheckOptions, err := updateOptions.ChangedHealthCheckConfiguration.GetNewGlobalHealthCheck() if err != nil { return err } if err := c.updateGlobalHealthCheckConfiguration(globalHealthCheckOptions); err != nil { return err } defer c.newContainerEvent(events.Update) return c.update(updateOptions) } // Attach to a container. // The last parameter "start" can be used to also start the container. // This will then Start and Attach APIs, ensuring proper // ordering of the two such that no output from the container is lost (e.g. the // Attach call occurs before Start). func (c *Container) Attach(ctx context.Context, streams *define.AttachStreams, keys string, resize <-chan resize.TerminalSize, start bool) (retChan <-chan error, finalErr error) { if !c.batched { c.lock.Lock() defer c.lock.Unlock() // defer's are executed LIFO so we are locked here // as long as we call this after the defer unlock() defer func() { if finalErr != nil { if err := saveContainerError(c, finalErr); err != nil { logrus.Debug(err) } } }() if err := c.syncContainer(); err != nil { return nil, err } } if c.state.State != define.ContainerStateRunning { if !start { return nil, errors.New("you can only attach to running containers") } if err := c.prepareToStart(ctx, true); err != nil { return nil, err } } if !start { // A bit awkward, technically passthrough never supports attach. We only pretend // it does as we leak the stdio fds down into the container but that of course only // works if we are the process that started conmon with the right fds. if c.LogDriver() == define.PassthroughLogging { return nil, fmt.Errorf("this container is using the 'passthrough' log driver, cannot attach: %w", define.ErrNoLogs) } else if c.LogDriver() == define.PassthroughTTYLogging { return nil, fmt.Errorf("this container is using the 'passthrough-tty' log driver, cannot attach: %w", define.ErrNoLogs) } } attachChan := make(chan error) // We need to ensure that we don't return until start() fired in attach. // Use a channel to sync startedChan := make(chan bool) // Attach to the container before starting it go func() { // Start resizing if c.LogDriver() != define.PassthroughLogging && c.LogDriver() != define.PassthroughTTYLogging { registerResizeFunc(resize, c.bundlePath()) } opts := new(AttachOptions) opts.Streams = streams opts.DetachKeys = &keys opts.Start = start opts.Started = startedChan // attach and start the container on a different thread. waitForHealthy must // be done later, as it requires to run on the same thread that holds the lock // for the container. if err := c.ociRuntime.Attach(c, opts); err != nil { attachChan <- err } close(attachChan) }() select { case err := <-attachChan: return nil, err case <-startedChan: c.newContainerEvent(events.Attach) } if start { if err := c.waitForHealthy(ctx); err != nil { return nil, err } } return attachChan, nil } // RestartWithTimeout restarts a running container and takes a given timeout in uint func (c *Container) RestartWithTimeout(ctx context.Context, timeout uint) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if err := c.checkDependenciesAndHandleError(); err != nil { return err } return c.restartWithTimeout(ctx, timeout) } // Stop uses the container's stop signal (or SIGTERM if no signal was specified) // to stop the container, and if it has not stopped after container's stop // timeout, SIGKILL is used to attempt to forcibly stop the container // Default stop timeout is 10 seconds, but can be overridden when the container // is created func (c *Container) Stop() error { // Stop with the container's given timeout return c.StopWithTimeout(c.config.StopTimeout) } // StopWithTimeout is a version of Stop that allows a timeout to be specified // manually. If timeout is 0, SIGKILL will be used immediately to kill the // container. func (c *Container) StopWithTimeout(timeout uint) (finalErr error) { // Have to lock the pod the container is a part of. // This prevents running `podman stop` at the same time a // `podman pod start` is running, which could lead to weird races. // Pod locks come before container locks, so do this first. if c.config.Pod != "" { // If we get an error, the pod was probably removed. // So we get an expected ErrCtrRemoved instead of ErrPodRemoved, // just ignore this and move on to syncing the container. pod, _ := c.runtime.state.Pod(c.config.Pod) if pod != nil { pod.lock.Lock() defer pod.lock.Unlock() } } if !c.batched { c.lock.Lock() defer c.lock.Unlock() // defer's are executed LIFO so we are locked here // as long as we call this after the defer unlock() defer func() { // The podman stop command is idempotent while the internal function here is not. // As such we do not want to log these errors in the state because they are not // actually user visible errors. if finalErr != nil && !errors.Is(finalErr, define.ErrCtrStopped) && !errors.Is(finalErr, define.ErrCtrStateInvalid) { if err := saveContainerError(c, finalErr); err != nil { logrus.Debug(err) } } }() if err := c.syncContainer(); err != nil { return err } } return c.stop(timeout) } // Kill sends a signal to a container func (c *Container) Kill(signal uint) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } switch c.state.State { case define.ContainerStateRunning, define.ContainerStateStopping, define.ContainerStatePaused: // Note that killing containers in "stopping" state is okay. // In that state, the Podman is waiting for the runtime to // stop the container and if that is taking too long, a user // may have decided to kill the container after all. default: return fmt.Errorf("can only kill running containers. %s is in state %s: %w", c.ID(), c.state.State.String(), define.ErrCtrStateInvalid) } // Hardcode all = false, we only use all when removing. if err := c.ociRuntime.KillContainer(c, signal, false); err != nil { return err } c.state.StoppedByUser = true c.newContainerEvent(events.Kill) // Make sure to wait for the container to exit in case of SIGKILL. if signal == uint(unix.SIGKILL) { return c.waitForConmonToExitAndSave() } return c.save() } // HTTPAttach forwards an attach session over a hijacked HTTP session. // HTTPAttach will consume and close the included httpCon, which is expected to // be sourced from a hijacked HTTP connection. // The cancel channel is optional, and can be used to asynchronously cancel the // attach session. // The streams variable is only supported if the container was not a terminal, // and allows specifying which of the container's standard streams will be // forwarded to the client. // This function returns when the attach finishes. It does not hold the lock for // the duration of its runtime, only using it at the beginning to verify state. // The streamLogs parameter indicates that all the container's logs until present // will be streamed at the beginning of the attach. // The streamAttach parameter indicates that the attach itself will be streamed // over the socket; if this is not set, but streamLogs is, only the logs will be // sent. // At least one of streamAttach and streamLogs must be set. func (c *Container) HTTPAttach(r *http.Request, w http.ResponseWriter, streams *HTTPAttachStreams, detachKeys *string, cancel <-chan bool, streamAttach, streamLogs bool, hijackDone chan<- bool) error { // Ensure we don't leak a goroutine if we exit before hijack completes. defer func() { close(hijackDone) }() locked := false if !c.batched { locked = true c.lock.Lock() defer func() { if locked { c.lock.Unlock() } }() if err := c.syncContainer(); err != nil { return err } } // For Docker compatibility, we need to re-initialize containers in these states. if c.ensureState(define.ContainerStateConfigured, define.ContainerStateExited, define.ContainerStateStopped) { if err := c.initUnlocked(r.Context(), c.config.Pod != ""); err != nil { return fmt.Errorf("preparing container %s for attach: %w", c.ID(), err) } } else if !c.ensureState(define.ContainerStateCreated, define.ContainerStateRunning) { return fmt.Errorf("can only attach to created or running containers - currently in state %s: %w", c.state.State.String(), define.ErrCtrStateInvalid) } if !streamAttach && !streamLogs { return fmt.Errorf("must specify at least one of stream or logs: %w", define.ErrInvalidArg) } // We are NOT holding the lock for the duration of the function. locked = false c.lock.Unlock() logrus.Infof("Performing HTTP Hijack attach to container %s", c.ID()) c.newContainerEvent(events.Attach) return c.ociRuntime.HTTPAttach(c, r, w, streams, detachKeys, cancel, hijackDone, streamAttach, streamLogs) } // AttachResize resizes the container's terminal, which is displayed by Attach // and HTTPAttach. func (c *Container) AttachResize(newSize resize.TerminalSize) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if !c.ensureState(define.ContainerStateCreated, define.ContainerStateRunning) { return fmt.Errorf("can only resize created or running containers: %w", define.ErrCtrStateInvalid) } logrus.Infof("Resizing TTY of container %s", c.ID()) return c.ociRuntime.AttachResize(c, newSize) } // Mount mounts a container's filesystem on the host // The path where the container has been mounted is returned func (c *Container) Mount() (string, error) { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return "", err } } defer c.newContainerEvent(events.Mount) return c.mount() } // Unmount unmounts a container's filesystem on the host func (c *Container) Unmount(force bool) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if c.state.Mounted { mounted, err := c.runtime.storageService.MountedContainerImage(c.ID()) if err != nil { return fmt.Errorf("can't determine how many times %s is mounted, refusing to unmount: %w", c.ID(), err) } if mounted == 1 { if c.ensureState(define.ContainerStateRunning, define.ContainerStatePaused) { return fmt.Errorf("cannot unmount storage for container %s as it is running or paused: %w", c.ID(), define.ErrCtrStateInvalid) } execSessions, err := c.getActiveExecSessions() if err != nil { return err } if len(execSessions) != 0 { return fmt.Errorf("container %s has active exec sessions, refusing to unmount: %w", c.ID(), define.ErrCtrStateInvalid) } return fmt.Errorf("can't unmount %s last mount, it is still in use: %w", c.ID(), define.ErrInternal) } } defer c.newContainerEvent(events.Unmount) return c.unmount(force) } // Pause pauses a container func (c *Container) Pause() error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if c.state.State == define.ContainerStatePaused { return fmt.Errorf("%q is already paused: %w", c.ID(), define.ErrCtrStateInvalid) } if c.state.State != define.ContainerStateRunning { return fmt.Errorf("%q is not running, can't pause: %w", c.state.State, define.ErrCtrStateInvalid) } defer c.newContainerEvent(events.Pause) return c.pause() } // Unpause unpauses a container func (c *Container) Unpause() error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if c.state.State != define.ContainerStatePaused { return fmt.Errorf("%q is not paused, can't unpause: %w", c.ID(), define.ErrCtrStateInvalid) } defer c.newContainerEvent(events.Unpause) return c.unpause() } // Export exports a container's root filesystem as a tar archive // The archive will be saved as a file at the given path func (c *Container) Export(out io.Writer) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if c.state.State == define.ContainerStateRemoving { return fmt.Errorf("cannot mount container %s as it is being removed: %w", c.ID(), define.ErrCtrStateInvalid) } defer c.newContainerEvent(events.Mount) return c.export(out) } // AddArtifact creates and writes to an artifact file for the container func (c *Container) AddArtifact(name string, data []byte) error { if !c.valid { return define.ErrCtrRemoved } return os.WriteFile(c.getArtifactPath(name), data, 0o740) } // GetArtifact reads the specified artifact file from the container func (c *Container) GetArtifact(name string) ([]byte, error) { if !c.valid { return nil, define.ErrCtrRemoved } return os.ReadFile(c.getArtifactPath(name)) } // RemoveArtifact deletes the specified artifacts file func (c *Container) RemoveArtifact(name string) error { if !c.valid { return define.ErrCtrRemoved } return os.Remove(c.getArtifactPath(name)) } // Wait blocks until the container exits and returns its exit code. func (c *Container) Wait(ctx context.Context) (int32, error) { return c.WaitForExit(ctx, DefaultWaitInterval) } // WaitForExit blocks until the container exits and returns its exit code. The // argument is the interval at which checks the container's status. // If the argument is less than or equal to 0 Nanoseconds a default interval is // used. func (c *Container) WaitForExit(ctx context.Context, pollInterval time.Duration) (int32, error) { id := c.ID() if !c.valid { // if the container is not valid at this point as it was deleted, // check if the exit code was recorded in the db. exitCode, err := c.runtime.state.GetContainerExitCode(id) if err == nil { return exitCode, nil } return -1, define.ErrCtrRemoved } if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { if errors.Is(err, define.ErrNoSuchCtr) || errors.Is(err, define.ErrCtrRemoved) { // if the container is not valid at this point as it was deleted, // check if the exit code was recorded in the db. exitCode, err := c.runtime.state.GetContainerExitCode(id) if err == nil { return exitCode, nil } } return -1, err } } conmonPID := c.state.ConmonPID // conmonPID == 0 means container is not running if conmonPID == 0 { exitCode, err := c.runtime.state.GetContainerExitCode(id) if err != nil { if errors.Is(err, define.ErrNoSuchExitCode) { // If the container is configured or created, we must assume it never ran. if c.ensureState(define.ContainerStateConfigured, define.ContainerStateCreated) { return 0, nil } } return -1, err } return exitCode, nil } conmonPidFd := c.getConmonPidFd() if conmonPidFd > -1 { defer unix.Close(conmonPidFd) } if pollInterval <= 0 { pollInterval = DefaultWaitInterval } // we cannot wait locked as we would hold the lock forever, so we unlock and then lock again c.lock.Unlock() err := waitForConmonExit(ctx, conmonPID, conmonPidFd, pollInterval) c.lock.Lock() if err != nil { return -1, fmt.Errorf("failed to wait for conmon to exit: %w", err) } // we locked again so we must sync the state if err := c.syncContainer(); err != nil { if errors.Is(err, define.ErrNoSuchCtr) || errors.Is(err, define.ErrCtrRemoved) { // if the container is not valid at this point as it was deleted, // check if the exit code was recorded in the db. exitCode, err := c.runtime.state.GetContainerExitCode(id) if err == nil { return exitCode, nil } } return -1, err } // syncContainer already did the exit file read so nothing extra for us to do here return c.runtime.state.GetContainerExitCode(id) } func waitForConmonExit(ctx context.Context, conmonPID, conmonPidFd int, pollInterval time.Duration) error { if conmonPidFd > -1 { for { fds := []unix.PollFd{{Fd: int32(conmonPidFd), Events: unix.POLLIN}} if n, err := unix.Poll(fds, int(pollInterval.Milliseconds())); err != nil { if err == unix.EINTR { continue } return err } else if n == 0 { // n == 0 means timeout select { case <-ctx.Done(): return define.ErrCanceled default: // context not done, wait again continue } } return nil } } // no pidfd support, we must poll the pid for { if err := unix.Kill(conmonPID, 0); err != nil { if err == unix.ESRCH { break } return err } select { case <-ctx.Done(): return define.ErrCanceled case <-time.After(pollInterval): } } return nil } type waitResult struct { code int32 err error } func (c *Container) WaitForConditionWithInterval(ctx context.Context, waitTimeout time.Duration, conditions ...string) (int32, error) { if !c.valid { return -1, define.ErrCtrRemoved } if len(conditions) == 0 { panic("at least one condition should be passed") } ctx, cancelFn := context.WithCancel(ctx) defer cancelFn() resultChan := make(chan waitResult) waitForExit := false wantedStates := make(map[define.ContainerStatus]bool, len(conditions)) wantedHealthStates := make(map[string]bool) for _, rawCondition := range conditions { switch rawCondition { case define.HealthCheckHealthy, define.HealthCheckUnhealthy: if !c.HasHealthCheck() { return -1, fmt.Errorf("cannot use condition %q: container %s has no healthcheck", rawCondition, c.ID()) } wantedHealthStates[rawCondition] = true default: condition, err := define.StringToContainerStatus(rawCondition) if err != nil { return -1, err } switch condition { case define.ContainerStateExited, define.ContainerStateStopped: waitForExit = true default: wantedStates[condition] = true } } } trySend := func(code int32, err error) { select { case resultChan <- waitResult{code, err}: case <-ctx.Done(): } } if waitForExit { go func() { code, err := c.WaitForExit(ctx, waitTimeout) trySend(code, err) }() } if len(wantedStates) > 0 || len(wantedHealthStates) > 0 { go func() { stoppedCount := 0 for { if len(wantedStates) > 0 { state, err := c.State() if err != nil { // If the we wait for removing and the container is removed do not return this as error. // This allows callers to actually wait for the ctr to be removed. if wantedStates[define.ContainerStateRemoving] && (errors.Is(err, define.ErrNoSuchCtr) || errors.Is(err, define.ErrCtrRemoved)) { // check if the exit code was recorded in the db to return it exitCode, err := c.runtime.state.GetContainerExitCode(c.ID()) if err == nil { trySend(exitCode, nil) return } trySend(-1, nil) return } trySend(-1, err) return } if _, found := wantedStates[state]; found { trySend(-1, nil) return } } if len(wantedHealthStates) > 0 { // even if we are interested only in the health check // check that the container is still running to avoid // waiting until the timeout expires. if stoppedCount > 0 { stoppedCount++ } else { state, err := c.State() if err != nil { trySend(-1, err) return } if state != define.ContainerStateCreated && state != define.ContainerStateRunning && state != define.ContainerStatePaused { stoppedCount++ } } status, err := c.HealthCheckStatus() if err != nil { trySend(-1, err) return } if _, found := wantedHealthStates[status]; found { trySend(-1, nil) return } // wait for another waitTimeout interval to give the health check process some time // to record the healthy status. if stoppedCount > 1 { trySend(-1, define.ErrCtrStopped) return } } select { case <-ctx.Done(): return case <-time.After(waitTimeout): continue } } }() } var result waitResult select { case result = <-resultChan: cancelFn() case <-ctx.Done(): result = waitResult{-1, define.ErrCanceled} } return result.code, result.err } // Cleanup unmounts all mount points in container and cleans up container storage // It also cleans up the network stack. // onlyStopped is set by the podman container cleanup to ensure we only cleanup a stopped container, // all other states mean another process already called cleanup before us which is fine in such cases. func (c *Container) Cleanup(ctx context.Context, onlyStopped bool) error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { // When the container has already been removed, the OCI runtime directory remains. if errors.Is(err, define.ErrNoSuchCtr) || errors.Is(err, define.ErrCtrRemoved) { if err := c.cleanupRuntime(ctx); err != nil { return fmt.Errorf("cleaning up container %s from OCI runtime: %w", c.ID(), err) } return nil } logrus.Errorf("Syncing container %s status: %v", c.ID(), err) return err } } return c.fullCleanup(ctx, onlyStopped) } // Batch starts a batch operation on the given container // All commands in the passed function will execute under the same lock and // without synchronizing state after each operation // This will result in substantial performance benefits when running numerous // commands on the same container // Note that the container passed into the Batch function cannot be removed // during batched operations. runtime.RemoveContainer can only be called outside // of Batch // Any error returned by the given batch function will be returned unmodified by // Batch // As Batch normally disables updating the current state of the container, the // Sync() function is provided to enable container state to be updated and // checked within Batch. func (c *Container) Batch(batchFunc func(*Container) error) error { c.lock.Lock() defer c.lock.Unlock() newCtr := new(Container) newCtr.config = c.config newCtr.state = c.state newCtr.runtime = c.runtime newCtr.ociRuntime = c.ociRuntime newCtr.lock = c.lock newCtr.valid = true newCtr.batched = true err := batchFunc(newCtr) newCtr.batched = false return err } // Sync updates the status of a container by querying the OCI runtime. // If the container has not been created inside the OCI runtime, nothing will be // done. // Most of the time, Podman does not explicitly query the OCI runtime for // container status, and instead relies upon exit files created by conmon. // This can cause a disconnect between running state and what Podman sees in // cases where Conmon was killed unexpectedly, or runc was upgraded. // Running a manual Sync() ensures that container state will be correct in // such situations. func (c *Container) Sync() error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() } if err := c.syncContainer(); err != nil { return err } defer c.newContainerEvent(events.Sync) return nil } // ReloadNetwork reconfigures the container's network. // Technically speaking, it will tear down and then reconfigure the container's // network namespace, which will result in all firewall rules being recreated. // It is mostly intended to be used in cases where the system firewall has been // reloaded, and existing rules have been wiped out. It is expected that some // downtime will result, as the rules are destroyed as part of this process. // At present, this only works on root containers; it may be expanded to restart // slirp4netns in the future to work with rootless containers as well. // Requires that the container must be running or created. func (c *Container) ReloadNetwork() error { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return err } } if !c.ensureState(define.ContainerStateCreated, define.ContainerStateRunning) { return fmt.Errorf("cannot reload network unless container network has been configured: %w", define.ErrCtrStateInvalid) } return c.reloadNetwork() } // Refresh is DEPRECATED and REMOVED. func (c *Container) Refresh(ctx context.Context) error { // This has been deprecated for a long while, and is in the process of // being removed. return define.ErrNotImplemented } // ContainerCheckpointOptions is a struct used to pass the parameters // for checkpointing (and restoring) to the corresponding functions type ContainerCheckpointOptions struct { // Keep tells the API to not delete checkpoint artifacts Keep bool // KeepRunning tells the API to keep the container running // after writing the checkpoint to disk KeepRunning bool // TCPEstablished tells the API to checkpoint a container // even if it contains established TCP connections TCPEstablished bool // TargetFile tells the API to read (or write) the checkpoint image // from (or to) the filename set in TargetFile TargetFile string // CheckpointImageID tells the API to restore the container from // checkpoint image with ID set in CheckpointImageID CheckpointImageID string // Name tells the API that during restore from an exported // checkpoint archive a new name should be used for the // restored container Name string // IgnoreRootfs tells the API to not export changes to // the container's root file-system (or to not import) IgnoreRootfs bool // IgnoreStaticIP tells the API to ignore the IP set // during 'podman run' with '--ip'. This is especially // important to be able to restore a container multiple // times with '--import --name'. IgnoreStaticIP bool // IgnoreStaticMAC tells the API to ignore the MAC set // during 'podman run' with '--mac-address'. This is especially // important to be able to restore a container multiple // times with '--import --name'. IgnoreStaticMAC bool // IgnoreVolumes tells the API to not export or not to import // the content of volumes associated with the container IgnoreVolumes bool // Pre Checkpoint container and leave container running PreCheckPoint bool // Dump container with Pre Checkpoint images WithPrevious bool // ImportPrevious tells the API to restore container with two // images. One is TargetFile, the other is ImportPrevious. ImportPrevious string // CreateImage tells Podman to create an OCI image from container // checkpoint in the local image store. CreateImage string // Compression tells the API which compression to use for // the exported checkpoint archive. Compression archive.Compression // If Pod is set the container should be restored into the // given Pod. If Pod is empty it is a restore without a Pod. // Restoring a non Pod container into a Pod or a Pod container // without a Pod is theoretically possible, but will // probably not work if a PID namespace is shared. // A shared PID namespace means that a Pod container has PID 1 // in the infrastructure container, but without the infrastructure // container no PID 1 will be in the namespace and that is not // possible. Pod string // PrintStats tells the API to fill out the statistics about // how much time each component in the stack requires to // checkpoint a container. PrintStats bool // FileLocks tells the API to checkpoint/restore a container // with file-locks FileLocks bool } // Checkpoint checkpoints a container // The return values *define.CRIUCheckpointRestoreStatistics and int64 (time // the runtime needs to checkpoint the container) are only set if // options.PrintStats is set to true. Not setting options.PrintStats to true // will return nil and 0. func (c *Container) Checkpoint(ctx context.Context, options ContainerCheckpointOptions) (*define.CRIUCheckpointRestoreStatistics, int64, error) { logrus.Debugf("Trying to checkpoint container %s", c.ID()) if options.TargetFile != "" { if err := c.prepareCheckpointExport(); err != nil { return nil, 0, err } } if options.WithPrevious { if err := c.canWithPrevious(); err != nil { return nil, 0, err } } if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return nil, 0, err } } return c.checkpoint(ctx, options) } // Restore restores a container // The return values *define.CRIUCheckpointRestoreStatistics and int64 (time // the runtime needs to restore the container) are only set if // options.PrintStats is set to true. Not setting options.PrintStats to true // will return nil and 0. func (c *Container) Restore(ctx context.Context, options ContainerCheckpointOptions) (*define.CRIUCheckpointRestoreStatistics, int64, error) { if options.Pod == "" { logrus.Debugf("Trying to restore container %s", c.ID()) } else { logrus.Debugf("Trying to restore container %s into pod %s", c.ID(), options.Pod) } if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return nil, 0, err } } defer c.newContainerEvent(events.Restore) return c.restore(ctx, options) } // Indicate whether or not the container should restart func (c *Container) ShouldRestart(ctx context.Context) bool { logrus.Debugf("Checking if container %s should restart", c.ID()) if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return false } } return c.shouldRestart() } // CopyFromArchive copies the contents from the specified tarStream to path // *inside* the container. func (c *Container) CopyFromArchive(_ context.Context, containerPath string, chown, noOverwriteDirNonDir bool, rename map[string]string, tarStream io.Reader) (func() error, error) { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return nil, err } } return c.copyFromArchive(containerPath, chown, noOverwriteDirNonDir, rename, tarStream) } // CopyToArchive copies the contents from the specified path *inside* the // container to the tarStream. func (c *Container) CopyToArchive(ctx context.Context, containerPath string, tarStream io.Writer) (func() error, error) { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return nil, err } } return c.copyToArchive(containerPath, tarStream) } // Stat the specified path *inside* the container and return a file info. func (c *Container) Stat(ctx context.Context, containerPath string) (*define.FileInfo, error) { if !c.batched { c.lock.Lock() defer c.lock.Unlock() if err := c.syncContainer(); err != nil { return nil, err } } var mountPoint string var err error if c.state.Mounted { mountPoint = c.state.Mountpoint } else { mountPoint, err = c.mount() if err != nil { return nil, err } defer func() { if err := c.unmount(false); err != nil { logrus.Errorf("Unmounting container %s: %v", c.ID(), err) } }() } info, _, _, err := c.stat(mountPoint, containerPath) return info, err } func saveContainerError(c *Container, err error) error { c.state.Error = err.Error() return c.save() }