mirror of
https://github.com/containers/podman.git
synced 2025-09-28 17:25:31 +08:00
build(deps): bump github.com/containers/storage from 1.13.5 to 1.14.0
Bumps [github.com/containers/storage](https://github.com/containers/storage) from 1.13.5 to 1.14.0. - [Release notes](https://github.com/containers/storage/releases) - [Changelog](https://github.com/containers/storage/blob/master/docs/containers-storage-changes.md) - [Commits](https://github.com/containers/storage/compare/v1.13.5...v1.14.0) Signed-off-by: dependabot-preview[bot] <support@dependabot.com> Signed-off-by: Valentin Rothberg <rothberg@redhat.com>
This commit is contained in:
![27856297+dependabot-preview[bot]@users.noreply.github.com](/assets/img/avatar_default.png)
committed by
Valentin Rothberg

parent
c673ff8cb6
commit
866391bb57
67
vendor/github.com/klauspost/compress/flate/huffman_code.go
generated
vendored
67
vendor/github.com/klauspost/compress/flate/huffman_code.go
generated
vendored
@ -10,6 +10,12 @@ import (
|
||||
"sort"
|
||||
)
|
||||
|
||||
const (
|
||||
maxBitsLimit = 16
|
||||
// number of valid literals
|
||||
literalCount = 286
|
||||
)
|
||||
|
||||
// hcode is a huffman code with a bit code and bit length.
|
||||
type hcode struct {
|
||||
code, len uint16
|
||||
@ -25,7 +31,7 @@ type huffmanEncoder struct {
|
||||
|
||||
type literalNode struct {
|
||||
literal uint16
|
||||
freq int32
|
||||
freq uint16
|
||||
}
|
||||
|
||||
// A levelInfo describes the state of the constructed tree for a given depth.
|
||||
@ -54,7 +60,11 @@ func (h *hcode) set(code uint16, length uint16) {
|
||||
h.code = code
|
||||
}
|
||||
|
||||
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
|
||||
func reverseBits(number uint16, bitLength byte) uint16 {
|
||||
return bits.Reverse16(number << ((16 - bitLength) & 15))
|
||||
}
|
||||
|
||||
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} }
|
||||
|
||||
func newHuffmanEncoder(size int) *huffmanEncoder {
|
||||
// Make capacity to next power of two.
|
||||
@ -64,10 +74,10 @@ func newHuffmanEncoder(size int) *huffmanEncoder {
|
||||
|
||||
// Generates a HuffmanCode corresponding to the fixed literal table
|
||||
func generateFixedLiteralEncoding() *huffmanEncoder {
|
||||
h := newHuffmanEncoder(maxNumLit)
|
||||
h := newHuffmanEncoder(literalCount)
|
||||
codes := h.codes
|
||||
var ch uint16
|
||||
for ch = 0; ch < maxNumLit; ch++ {
|
||||
for ch = 0; ch < literalCount; ch++ {
|
||||
var bits uint16
|
||||
var size uint16
|
||||
switch {
|
||||
@ -108,7 +118,7 @@ func generateFixedOffsetEncoding() *huffmanEncoder {
|
||||
var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
|
||||
var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
|
||||
|
||||
func (h *huffmanEncoder) bitLength(freq []int32) int {
|
||||
func (h *huffmanEncoder) bitLength(freq []uint16) int {
|
||||
var total int
|
||||
for i, f := range freq {
|
||||
if f != 0 {
|
||||
@ -118,8 +128,6 @@ func (h *huffmanEncoder) bitLength(freq []int32) int {
|
||||
return total
|
||||
}
|
||||
|
||||
const maxBitsLimit = 16
|
||||
|
||||
// Return the number of literals assigned to each bit size in the Huffman encoding
|
||||
//
|
||||
// This method is only called when list.length >= 3
|
||||
@ -163,9 +171,9 @@ func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
|
||||
// We initialize the levels as if we had already figured this out.
|
||||
levels[level] = levelInfo{
|
||||
level: level,
|
||||
lastFreq: list[1].freq,
|
||||
nextCharFreq: list[2].freq,
|
||||
nextPairFreq: list[0].freq + list[1].freq,
|
||||
lastFreq: int32(list[1].freq),
|
||||
nextCharFreq: int32(list[2].freq),
|
||||
nextPairFreq: int32(list[0].freq) + int32(list[1].freq),
|
||||
}
|
||||
leafCounts[level][level] = 2
|
||||
if level == 1 {
|
||||
@ -197,7 +205,12 @@ func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
|
||||
l.lastFreq = l.nextCharFreq
|
||||
// Lower leafCounts are the same of the previous node.
|
||||
leafCounts[level][level] = n
|
||||
l.nextCharFreq = list[n].freq
|
||||
e := list[n]
|
||||
if e.literal < math.MaxUint16 {
|
||||
l.nextCharFreq = int32(e.freq)
|
||||
} else {
|
||||
l.nextCharFreq = math.MaxInt32
|
||||
}
|
||||
} else {
|
||||
// The next item on this row is a pair from the previous row.
|
||||
// nextPairFreq isn't valid until we generate two
|
||||
@ -273,12 +286,12 @@ func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalN
|
||||
//
|
||||
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
|
||||
// maxBits The maximum number of bits to use for any literal.
|
||||
func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
|
||||
func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
|
||||
if h.freqcache == nil {
|
||||
// Allocate a reusable buffer with the longest possible frequency table.
|
||||
// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
|
||||
// The largest of these is maxNumLit, so we allocate for that case.
|
||||
h.freqcache = make([]literalNode, maxNumLit+1)
|
||||
// Possible lengths are codegenCodeCount, offsetCodeCount and literalCount.
|
||||
// The largest of these is literalCount, so we allocate for that case.
|
||||
h.freqcache = make([]literalNode, literalCount+1)
|
||||
}
|
||||
list := h.freqcache[:len(freq)+1]
|
||||
// Number of non-zero literals
|
||||
@ -345,3 +358,27 @@ func (s byFreq) Less(i, j int) bool {
|
||||
}
|
||||
|
||||
func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
|
||||
|
||||
// histogramSize accumulates a histogram of b in h.
|
||||
// An estimated size in bits is returned.
|
||||
// Unassigned values are assigned '1' in the histogram.
|
||||
// len(h) must be >= 256, and h's elements must be all zeroes.
|
||||
func histogramSize(b []byte, h []uint16, fill bool) int {
|
||||
h = h[:256]
|
||||
for _, t := range b {
|
||||
h[t]++
|
||||
}
|
||||
invTotal := 1.0 / float64(len(b))
|
||||
shannon := 0.0
|
||||
single := math.Ceil(-math.Log2(invTotal))
|
||||
for i, v := range h[:] {
|
||||
if v > 0 {
|
||||
n := float64(v)
|
||||
shannon += math.Ceil(-math.Log2(n*invTotal) * n)
|
||||
} else if fill {
|
||||
shannon += single
|
||||
h[i] = 1
|
||||
}
|
||||
}
|
||||
return int(shannon + 0.99)
|
||||
}
|
||||
|
Reference in New Issue
Block a user