mirror of
https://github.com/open-telemetry/opentelemetry-python-contrib.git
synced 2025-07-30 13:43:03 +08:00
190 lines
7.0 KiB
Python
190 lines
7.0 KiB
Python
# Copyright 2020, OpenTelemetry Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
|
|
from opentelemetry.instrumentation.sklearn import (
|
|
DEFAULT_EXCLUDE_CLASSES,
|
|
DEFAULT_METHODS,
|
|
SklearnInstrumentor,
|
|
get_base_estimators,
|
|
get_delegator,
|
|
)
|
|
from opentelemetry.test.test_base import TestBase
|
|
from opentelemetry.trace import SpanKind
|
|
|
|
from .fixtures import pipeline, random_input
|
|
|
|
|
|
def assert_instrumented(base_estimators):
|
|
for _, estimator in base_estimators.items():
|
|
for method_name in DEFAULT_METHODS:
|
|
original_method_name = "_otel_original_" + method_name
|
|
if issubclass(estimator, tuple(DEFAULT_EXCLUDE_CLASSES)):
|
|
assert not hasattr(estimator, original_method_name)
|
|
continue
|
|
class_attr = getattr(estimator, method_name, None)
|
|
if isinstance(class_attr, property):
|
|
assert not hasattr(estimator, original_method_name)
|
|
continue
|
|
delegator = None
|
|
if hasattr(estimator, method_name):
|
|
delegator = get_delegator(estimator, method_name)
|
|
if delegator is not None:
|
|
assert hasattr(delegator, "_otel_original_fn")
|
|
elif hasattr(estimator, method_name):
|
|
assert hasattr(estimator, original_method_name)
|
|
|
|
|
|
def assert_uninstrumented(base_estimators):
|
|
for _, estimator in base_estimators.items():
|
|
for method_name in DEFAULT_METHODS:
|
|
original_method_name = "_otel_original_" + method_name
|
|
if issubclass(estimator, tuple(DEFAULT_EXCLUDE_CLASSES)):
|
|
assert not hasattr(estimator, original_method_name)
|
|
continue
|
|
class_attr = getattr(estimator, method_name, None)
|
|
if isinstance(class_attr, property):
|
|
assert not hasattr(estimator, original_method_name)
|
|
continue
|
|
delegator = None
|
|
if hasattr(estimator, method_name):
|
|
delegator = get_delegator(estimator, method_name)
|
|
if delegator is not None:
|
|
assert not hasattr(delegator, "_otel_original_fn")
|
|
elif hasattr(estimator, method_name):
|
|
assert not hasattr(estimator, original_method_name)
|
|
|
|
|
|
class TestSklearn(TestBase):
|
|
def test_package_instrumentation(self):
|
|
ski = SklearnInstrumentor()
|
|
|
|
base_estimators = get_base_estimators(packages=["sklearn"])
|
|
|
|
model = pipeline()
|
|
|
|
ski.instrument()
|
|
assert_instrumented(base_estimators)
|
|
|
|
x_test = random_input()
|
|
|
|
model.predict(x_test)
|
|
|
|
spans = self.memory_exporter.get_finished_spans()
|
|
self.assertEqual(len(spans), 8)
|
|
self.memory_exporter.clear()
|
|
|
|
ski.uninstrument()
|
|
assert_uninstrumented(base_estimators)
|
|
|
|
model = pipeline()
|
|
x_test = random_input()
|
|
|
|
model.predict(x_test)
|
|
|
|
spans = self.memory_exporter.get_finished_spans()
|
|
self.assertEqual(len(spans), 0)
|
|
|
|
def test_span_properties(self):
|
|
"""Test that we get all of the spans we expect."""
|
|
model = pipeline()
|
|
ski = SklearnInstrumentor()
|
|
ski.instrument_estimator(estimator=model)
|
|
|
|
x_test = random_input()
|
|
|
|
model.predict(x_test)
|
|
|
|
spans = self.memory_exporter.get_finished_spans()
|
|
self.assertEqual(len(spans), 8)
|
|
span = spans[0]
|
|
self.assertEqual(span.name, "StandardScaler.transform")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
|
span = spans[1]
|
|
self.assertEqual(span.name, "Normalizer.transform")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
|
span = spans[2]
|
|
self.assertEqual(span.name, "PCA.transform")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
self.assertEqual(span.parent.span_id, spans[4].context.span_id)
|
|
span = spans[3]
|
|
self.assertEqual(span.name, "TruncatedSVD.transform")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
self.assertEqual(span.parent.span_id, spans[4].context.span_id)
|
|
span = spans[4]
|
|
self.assertEqual(span.name, "FeatureUnion.transform")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
|
span = spans[5]
|
|
self.assertEqual(span.name, "RandomForestClassifier.predict_proba")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
self.assertEqual(span.parent.span_id, spans[6].context.span_id)
|
|
span = spans[6]
|
|
self.assertEqual(span.name, "RandomForestClassifier.predict")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
self.assertEqual(span.parent.span_id, spans[-1].context.span_id)
|
|
span = spans[7]
|
|
self.assertEqual(span.name, "Pipeline.predict")
|
|
self.assertEqual(span.kind, SpanKind.INTERNAL)
|
|
|
|
self.memory_exporter.clear()
|
|
|
|
# uninstrument
|
|
ski.uninstrument_estimator(estimator=model)
|
|
x_test = random_input()
|
|
model.predict(x_test)
|
|
spans = self.memory_exporter.get_finished_spans()
|
|
self.assertEqual(len(spans), 0)
|
|
|
|
def test_attrib_config(self):
|
|
"""Test that the attribute config makes spans on the decision trees."""
|
|
model = pipeline()
|
|
attrib_config = {RandomForestClassifier: ["estimators_"]}
|
|
ski = SklearnInstrumentor(
|
|
recurse_attribs=attrib_config,
|
|
exclude_classes=[], # decision trees excluded by default
|
|
)
|
|
ski.instrument_estimator(estimator=model)
|
|
|
|
x_test = random_input()
|
|
model.predict(x_test)
|
|
|
|
spans = self.memory_exporter.get_finished_spans()
|
|
self.assertEqual(len(spans), 8 + model.steps[-1][-1].n_estimators)
|
|
|
|
self.memory_exporter.clear()
|
|
|
|
ski.uninstrument_estimator(estimator=model)
|
|
x_test = random_input()
|
|
model.predict(x_test)
|
|
spans = self.memory_exporter.get_finished_spans()
|
|
self.assertEqual(len(spans), 0)
|
|
|
|
def test_span_attributes(self):
|
|
model = pipeline()
|
|
attributes = {"model_name": "random_forest_model"}
|
|
ski = SklearnInstrumentor()
|
|
ski.instrument_estimator(estimator=model, attributes=attributes)
|
|
|
|
x_test = random_input()
|
|
|
|
model.predict(x_test)
|
|
|
|
spans = self.memory_exporter.get_finished_spans()
|
|
for span in spans:
|
|
assert span.attributes["model_name"] == "random_forest_model"
|