Files
manim/active_projects/WindingNumber.py
Sridhar Ramesh c1dd5f1689 Incremental
2018-01-30 18:06:19 -08:00

1102 lines
39 KiB
Python

from helpers import *
from mobject.tex_mobject import TexMobject
from mobject import Mobject
from mobject.image_mobject import ImageMobject
from mobject.vectorized_mobject import *
from animation.animation import Animation
from animation.transform import *
from animation.simple_animations import *
from animation.playground import *
from animation.continual_animation import *
from topics.geometry import *
from topics.characters import *
from topics.functions import *
from topics.fractals import *
from topics.number_line import *
from topics.combinatorics import *
from topics.numerals import *
from topics.three_dimensions import *
from topics.objects import *
from topics.probability import *
from topics.complex_numbers import *
from scene import Scene
from scene.reconfigurable_scene import ReconfigurableScene
from scene.zoomed_scene import *
from camera import *
from mobject.svg_mobject import *
from mobject.tex_mobject import *
from topics.graph_scene import *
# TODO/WARNING: There's a lot of refactoring and cleanup to be done in this code,
# (and it will be done, but first I'll figure out what I'm doing with all this...)
# -SR
class EquationSolver1d(GraphScene, ZoomedScene):
CONFIG = {
"func" : lambda x : x,
"targetX" : 0,
"targetY" : 0,
"initial_lower_x" : 0,
"initial_upper_x" : 10,
"num_iterations" : 10,
"iteration_at_which_to_start_zoom" : None,
"graph_label" : None,
"show_target_line" : True
}
def drawGraph(self):
self.setup_axes()
self.graph = self.get_graph(self.func)
self.add(self.graph)
if self.graph_label != None:
self.add(self.get_graph_label(self.graph, self.graph_label,
x_val = 4, direction = RIGHT))
if self.show_target_line:
target_line_object = DashedLine(
self.coords_to_point(self.x_min, self.targetY),
self.coords_to_point(self.x_max, self.targetY),
dashed_segment_length = 0.1)
self.add(target_line_object)
target_line_label = TexMobject("y = " + str(self.targetY))
target_line_label.next_to(target_line_object.get_left(), UP + RIGHT)
self.add(target_line_label)
def solveEquation(self):
leftBrace, rightBrace = xBraces = TexMobject("||")
xBraces.stretch(2, 0)
downBrace, upBrace = yBraces = TexMobject("||")
yBraces.stretch(2, 0)
yBraces.rotate(TAU/4)
lowerX = self.initial_lower_x
lowerY = self.func(lowerX)
upperX = self.initial_upper_x
upperY = self.func(upperX)
leftBrace.move_to(self.coords_to_point(lowerX, 0))
leftBraceLabel = DecimalNumber(lowerX)
leftBraceLabel.next_to(leftBrace, DOWN + LEFT, buff = SMALL_BUFF)
leftBraceLabelAnimation = ContinualChangingDecimal(leftBraceLabel,
lambda alpha : self.point_to_coords(leftBrace.get_center())[0],
tracked_mobject = leftBrace)
self.add(leftBraceLabelAnimation)
rightBrace.move_to(self.coords_to_point(upperX, 0))
rightBraceLabel = DecimalNumber(upperX)
rightBraceLabel.next_to(rightBrace, DOWN + RIGHT, buff = SMALL_BUFF)
rightBraceLabelAnimation = ContinualChangingDecimal(rightBraceLabel,
lambda alpha : self.point_to_coords(rightBrace.get_center())[0],
tracked_mobject = rightBrace)
self.add(rightBraceLabelAnimation)
downBrace.move_to(self.coords_to_point(0, lowerY))
downBraceLabel = DecimalNumber(lowerY)
downBraceLabel.next_to(downBrace, LEFT + DOWN, buff = SMALL_BUFF)
downBraceLabelAnimation = ContinualChangingDecimal(downBraceLabel,
lambda alpha : self.point_to_coords(downBrace.get_center())[1],
tracked_mobject = downBrace)
self.add(downBraceLabelAnimation)
upBrace.move_to(self.coords_to_point(0, upperY))
upBraceLabel = DecimalNumber(upperY)
upBraceLabel.next_to(upBrace, LEFT + UP, buff = SMALL_BUFF)
upBraceLabelAnimation = ContinualChangingDecimal(upBraceLabel,
lambda alpha : self.point_to_coords(upBrace.get_center())[1],
tracked_mobject = upBrace)
self.add(upBraceLabelAnimation)
lowerDotPoint = self.input_to_graph_point(lowerX, self.graph)
lowerDotXPoint = self.coords_to_point(lowerX, 0)
lowerDotYPoint = self.coords_to_point(0, self.func(lowerX))
lowerDot = Dot(lowerDotPoint)
upperDotPoint = self.input_to_graph_point(upperX, self.graph)
upperDot = Dot(upperDotPoint)
upperDotXPoint = self.coords_to_point(upperX, 0)
upperDotYPoint = self.coords_to_point(0, self.func(upperX))
lowerXLine = Line(lowerDotXPoint, lowerDotPoint, stroke_width = 1, color = YELLOW)
upperXLine = Line(upperDotXPoint, upperDotPoint, stroke_width = 1, color = YELLOW)
lowerYLine = Line(lowerDotYPoint, lowerDotPoint, stroke_width = 1, color = YELLOW)
upperYLine = Line(upperDotYPoint, upperDotPoint, stroke_width = 1, color = YELLOW)
self.add(lowerXLine, upperXLine, lowerYLine, upperYLine)
self.add(xBraces, yBraces, lowerDot, upperDot)
for i in range(self.num_iterations):
if i == self.iteration_at_which_to_start_zoom:
self.activate_zooming()
self.little_rectangle.move_to(
self.coords_to_point(self.targetX, self.targetY))
inverseZoomFactor = 1/float(self.zoom_factor)
self.play(
lowerDot.scale_in_place, inverseZoomFactor,
upperDot.scale_in_place, inverseZoomFactor)
def makeUpdater(xAtStart):
def updater(group, alpha):
dot, xBrace, yBrace, xLine, yLine = group
newX = interpolate(xAtStart, midX, alpha)
newY = self.func(newX)
graphPoint = self.input_to_graph_point(newX,
self.graph)
dot.move_to(graphPoint)
xAxisPoint = self.coords_to_point(newX, 0)
xBrace.move_to(xAxisPoint)
yAxisPoint = self.coords_to_point(0, newY)
yBrace.move_to(yAxisPoint)
xLine.put_start_and_end_on(xAxisPoint, graphPoint)
yLine.put_start_and_end_on(yAxisPoint, graphPoint)
return group
return updater
midX = (lowerX + upperX)/float(2)
midY = self.func(midX)
midCoords = self.coords_to_point(midX, midY)
midColor = RED
midXPoint = Dot(self.coords_to_point(midX, 0), color = midColor)
self.play(
ReplacementTransform(leftBrace.copy(), midXPoint),
ReplacementTransform(rightBrace.copy(), midXPoint))
midXLine = Line(self.coords_to_point(midX, 0), midCoords, color = midColor)
self.play(ShowCreation(midXLine))
midDot = Dot(midCoords, color = midColor)
if(self.iteration_at_which_to_start_zoom != None and
i >= self.iteration_at_which_to_start_zoom):
midDot.scale_in_place(inverseZoomFactor)
self.add(midDot)
midYLine = Line(midCoords, self.coords_to_point(0, midY), color = midColor)
self.play(ShowCreation(midYLine))
if midY < self.targetY:
movingGroup = Group(lowerDot,
leftBrace, downBrace,
lowerXLine, lowerYLine)
self.play(
UpdateFromAlphaFunc(movingGroup, makeUpdater(lowerX)))
lowerX = midX
lowerY = midY
else:
movingGroup = Group(upperDot,
rightBrace, upBrace,
upperXLine, upperYLine)
self.play(
UpdateFromAlphaFunc(movingGroup, makeUpdater(upperX)))
upperX = midX
upperY = midY
self.remove(midXLine, midDot, midYLine)
self.wait()
def construct(self):
self.drawGraph()
self.solveEquation()
def rev_to_color(alpha):
alpha = alpha % 1
colors = ["#FF0000", ORANGE, YELLOW, "#00FF00", "#0000FF", "#FF00FF"]
num_colors = len(colors)
beta = (alpha % (1.0/num_colors)) * num_colors
start_index = int(np.floor(num_colors * alpha)) % num_colors
end_index = (start_index + 1) % num_colors
return interpolate_color(colors[start_index], colors[end_index], beta)
def point_to_rev((x, y)):
# Warning: np.arctan2 would happily discontinuously returns the value 0 for (0, 0), due to
# design choices in the underlying atan2 library call, but for our purposes, this is
# illegitimate, and all winding number calculations must be set up to avoid this
if (x, y) == (0, 0):
print "Error! Angle of (0, 0) computed!"
return None
return np.true_divide(np.arctan2(y, x), TAU)
# Returns the value with the same fractional component as x, closest to m
def resit_near(x, m):
frac_diff = (x - m) % 1
if frac_diff > 0.5:
frac_diff -= 1
return m + frac_diff
# TODO?: Perhaps use modulus of (uniform) continuity instead of num_checkpoints, calculating
# latter as needed from former?
def make_alpha_winder(func, start, end, num_checkpoints):
check_points = [None for i in range(num_checkpoints)]
check_points[0] = func(start)
step_size = np.true_divide(end - start, num_checkpoints)
for i in range(num_checkpoints - 1):
check_points[i + 1] = \
resit_near(
func(start + (i + 1) * step_size),
check_points[i])
def return_func(alpha):
index = clamp(0, num_checkpoints - 1, int(alpha * num_checkpoints))
x = interpolate(start, end, alpha)
return resit_near(func(x), check_points[index])
return return_func
def split_interval((a, b)):
mid = (a + b)/2.0
return ((a, mid), (mid, b))
class RectangleData():
def __init__(self, x_interval, y_interval):
self.rect = (x_interval, y_interval)
def get_top_left(self):
return np.array((self.rect[0][0], self.rect[1][1]))
def get_top_right(self):
return np.array((self.rect[0][1], self.rect[1][1]))
def get_bottom_right(self):
return np.array((self.rect[0][1], self.rect[1][0]))
def get_bottom_left(self):
return np.array((self.rect[0][0], self.rect[1][0]))
def get_top(self):
return (self.get_top_left(), self.get_top_right())
def get_right(self):
return (self.get_top_right(), self.get_bottom_right())
def get_bottom(self):
return (self.get_bottom_right(), self.get_bottom_left())
def get_left(self):
return (self.get_bottom_left(), self.get_top_left())
def splits_on_dim(self, dim):
x_interval = self.rect[0]
y_interval = self.rect[1]
# TODO: Can refactor the following; will do later
if dim == 0:
return_data = [RectangleData(new_interval, y_interval) for new_interval in split_interval(x_interval)]
elif dim == 1:
return_data = [RectangleData(x_interval, new_interval) for new_interval in split_interval(y_interval)]
else:
print "RectangleData.splits_on_dim passed illegitimate dimension!"
return tuple(return_data)
def split_line_on_dim(self, dim):
x_interval = self.rect[0]
y_interval = self.rect[1]
if dim == 0:
sides = (self.get_top(), self.get_bottom())
elif dim == 1:
sides = (self.get_left(), self.get_right())
else:
print "RectangleData.split_line_on_dim passed illegitimate dimension!"
return tuple([mid(x, y) for (x, y) in sides])
def complex_to_pair(c):
return (c.real, c.imag)
def plane_poly_with_roots(*points):
def f((x, y)):
return complex_to_pair(np.prod([complex(x, y) - complex(a,b) for (a,b) in points]))
return f
def plane_func_from_complex_func(f):
return lambda (x, y) : complex_to_pair(f(complex(x,y)))
def point_func_from_complex_func(f):
return lambda (x, y, z): complex_to_R3(f(complex(x, y)))
empty_animation = Animation(Mobject(), run_time = 0)
def EmptyAnimation():
return empty_animation
class WalkerAnimation(Animation):
CONFIG = {
"walk_func" : None, # Must be initialized to use
"remover" : True,
"rate_func" : None,
"coords_to_point" : None
}
def __init__(self, walk_func, rev_func, coords_to_point, scale_factor, **kwargs):
self.walk_func = walk_func
self.rev_func = rev_func
self.coords_to_point = coords_to_point
self.compound_walker = VGroup()
self.compound_walker.walker = PiCreature(color = RED)
self.compound_walker.walker.scale(scale_factor)
self.compound_walker.arrow = Arrow(ORIGIN, RIGHT) #, buff = 0)
self.compound_walker.digest_mobject_attrs()
Animation.__init__(self, self.compound_walker, **kwargs)
# Perhaps abstract this out into an "Animation updating from original object" class
def update_submobject(self, submobject, starting_submobject, alpha):
submobject.points = np.array(starting_submobject.points)
def update_mobject(self, alpha):
Animation.update_mobject(self, alpha)
cur_x, cur_y = cur_coords = self.walk_func(alpha)
cur_point = self.coords_to_point(cur_x, cur_y)
self.mobject.walker.move_to(cur_point)
rev = self.rev_func(cur_coords)
self.mobject.walker.set_color(rev_to_color(rev))
self.mobject.arrow.set_color(rev_to_color(rev))
self.mobject.arrow.rotate(
rev * TAU,
about_point = ORIGIN #self.mobject.arrow.get_start()
)
def walker_animation_with_display(
walk_func,
rev_func,
coords_to_point,
number_update_func = None,
scale_factor = 0.35,
**kwargs
):
walker_anim = WalkerAnimation(
walk_func = walk_func,
rev_func = rev_func,
coords_to_point = coords_to_point,
scale_factor = scale_factor,
**kwargs)
walker = walker_anim.compound_walker.walker
if number_update_func != None:
display = DecimalNumber(0, include_background_rectangle = True)
displaycement = scale_factor * DOWN # How about that pun, eh?
display.move_to(walker.get_center() + displaycement)
display_anim = ChangingDecimal(display,
number_update_func,
tracked_mobject = walker_anim.compound_walker.walker,
**kwargs)
anim_group = AnimationGroup(walker_anim, display_anim)
return anim_group
else:
return walker_anim
def LinearWalker(
start_coords,
end_coords,
coords_to_point,
rev_func,
number_update_func = None,
**kwargs
):
walk_func = lambda alpha : interpolate(start_coords, end_coords, alpha)
return walker_animation_with_display(
walk_func = walk_func,
coords_to_point = coords_to_point,
rev_func = rev_func,
number_update_func = number_update_func,
**kwargs)
class PiWalker(Scene):
CONFIG = {
"func" : plane_func_from_complex_func(lambda c : c**2),
"walk_coords" : [],
"step_run_time" : 1
}
def construct(self):
rev_func = lambda p : point_to_rev(self.func(p))
num_plane = NumberPlane()
num_plane.fade()
self.add(num_plane)
walk_coords = self.walk_coords
for i in range(len(walk_coords)):
start_x, start_y = start_coords = walk_coords[i]
start_point = num_plane.coords_to_point(start_x, start_y)
end_x, end_y = end_coords = walk_coords[(i + 1) % len(walk_coords)]
end_point = num_plane.coords_to_point(end_x, end_y)
self.play(
LinearWalker(
start_coords = start_coords,
end_coords = end_coords,
coords_to_point = num_plane.coords_to_point,
rev_func = rev_func,
remover = (i < len(walk_coords) - 1)
),
ShowCreation(Line(start_point, end_point), rate_func = None),
run_time = self.step_run_time)
# TODO: Allow smooth paths instead of breaking them up into lines, and
# use point_from_proportion to get points along the way
self.wait()
class PiWalkerRect(PiWalker):
CONFIG = {
"start_x" : -1,
"start_y" : 1,
"walk_width" : 2,
"walk_height" : 2,
}
def setup(self):
TL = np.array((self.start_x, self.start_y))
TR = TL + (self.walk_width, 0)
BR = TR + (0, -self.walk_height)
BL = BR + (-self.walk_width, 0)
self.walk_coords = [TL, TR, BR, BL]
PiWalker.setup(self)
class PiWalkerCircle(PiWalker):
CONFIG = {
"radius" : 1,
"num_steps" : 100,
"step_run_time" : 0.01
}
def setup(self):
r = self.radius
N = self.num_steps
self.walk_coords = [r * np.array((np.cos(i * TAU/N), np.sin(i * TAU/N))) for i in range(N)]
PiWalker.setup(self)
# TODO: Perhaps restructure this to avoid using AnimationGroup, and instead
# use lists of animations or lists or other such data, to be merged and processed into parallel
# animations later
class EquationSolver2d(Scene):
CONFIG = {
"func" : plane_poly_with_roots((1, 2), (-1, 3)),
"initial_lower_x" : -5.1,
"initial_upper_x" : 5.1,
"initial_lower_y" : -3.1,
"initial_upper_y" : 3.1,
"num_iterations" : 5,
"num_checkpoints" : 10,
# TODO: Consider adding a "find_all_roots" flag, which could be turned off
# to only explore one of the two candidate subrectangles when both are viable
}
def construct(self):
num_plane = NumberPlane()
num_plane.fade()
self.add(num_plane)
rev_func = lambda p : point_to_rev(self.func(p))
clockwise_rev_func = lambda p : -rev_func(p)
def Animate2dSolver(cur_depth, rect, dim_to_split):
print "Solver at depth: " + str(cur_depth)
if cur_depth >= self.num_iterations:
return EmptyAnimation()
def draw_line_return_wind(start, end, start_wind):
alpha_winder = make_alpha_winder(clockwise_rev_func, start, end, self.num_checkpoints)
a0 = alpha_winder(0)
rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind
thin_line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
stroke_width = 2,
color = RED)
walker_anim = LinearWalker(
start_coords = start,
end_coords = end,
coords_to_point = num_plane.coords_to_point,
rev_func = rev_func,
number_update_func = rebased_winder,
remover = True
)
line_draw_anim = AnimationGroup(
ShowCreation(thin_line),
walker_anim,
rate_func = None)
anim = line_draw_anim
return (anim, rebased_winder(1))
wind_so_far = 0
anim = EmptyAnimation()
sides = [
rect.get_top(),
rect.get_right(),
rect.get_bottom(),
rect.get_left()
]
for (start, end) in sides:
(next_anim, wind_so_far) = draw_line_return_wind(start, end, wind_so_far)
anim = Succession(anim, next_anim)
total_wind = round(wind_so_far)
if total_wind == 0:
coords = [
rect.get_top_left(),
rect.get_top_right(),
rect.get_bottom_right(),
rect.get_bottom_left()
]
points = [num_plane.coords_to_point(x, y) for (x, y) in coords]
# TODO: Maybe use diagonal lines or something to fill in rectangles indicating
# their "Nothing here" status?
fill_rect = polygonObject = Polygon(*points, fill_opacity = 0.8, color = RED)
return Succession(anim, FadeIn(fill_rect))
else:
(sub_rect1, sub_rect2) = rect.splits_on_dim(dim_to_split)
sub_rects = [sub_rect1, sub_rect2]
sub_anims = [
Animate2dSolver(
cur_depth = cur_depth + 1,
rect = sub_rect,
dim_to_split = 1 - dim_to_split
)
for sub_rect in sub_rects
]
mid_line_coords = rect.split_line_on_dim(dim_to_split)
mid_line_points = [num_plane.coords_to_point(x, y) for (x, y) in mid_line_coords]
mid_line = DashedLine(*mid_line_points)
return Succession(anim,
ShowCreation(mid_line),
# FadeOut(mid_line), # TODO: Can change timing so this fades out at just the time it would be overdrawn
# TODO: Investigate weirdness with changing z buffer order on mid_line vs. rectangle lines
AnimationGroup(*sub_anims)
)
lower_x = self.initial_lower_x
upper_x = self.initial_upper_x
lower_y = self.initial_lower_y
upper_y = self.initial_upper_y
x_interval = (lower_x, upper_x)
y_interval = (lower_y, upper_y)
rect = RectangleData(x_interval, y_interval)
print "Starting to compute anim"
anim = Animate2dSolver(
cur_depth = 0,
rect = rect,
dim_to_split = 0,
)
print "Done computing anim"
self.play(anim)
self.wait()
# TODO: Perhaps have bullets (pulses) fade out and in at ends of line, instead of jarringly
# popping out and in?
#
# TODO: Perhaps have bullets change color corresponding to a function of their coordinates?
# This could involve some merging of functoinality with PiWalker
class LinePulser(ContinualAnimation):
def __init__(self, line, bullet_template, num_bullets, pulse_time, output_func = None, **kwargs):
self.line = line
self.num_bullets = num_bullets
self.pulse_time = pulse_time
self.bullets = [bullet_template.copy() for i in range(num_bullets)]
self.output_func = output_func
ContinualAnimation.__init__(self, VGroup(line, VGroup(*self.bullets)), **kwargs)
def update_mobject(self, dt):
alpha = self.external_time % self.pulse_time
start = self.line.get_start()
end = self.line.get_end()
for i in range(self.num_bullets):
position = interpolate(start, end,
np.true_divide((i + alpha),(self.num_bullets)))
self.bullets[i].move_to(position)
if self.output_func:
position_2d = (position[0], position[1])
rev = point_to_rev(self.output_func(position_2d))
color = rev_to_color(rev)
self.bullets[i].set_color(color)
class ArrowCircleTest(Scene):
def construct(self):
circle_radius = 3
circle = Circle(radius = circle_radius, color = WHITE)
self.add(circle)
base_arrow = Arrow(circle_radius * 0.7 * RIGHT, circle_radius * 1.3 * RIGHT)
def rev_rotate(x, revs):
x.rotate(revs * TAU, about_point = ORIGIN)
x.set_color(rev_to_color(revs))
return x
num_arrows = 8 * 3
arrows = [rev_rotate(base_arrow.copy(), (np.true_divide(i, num_arrows))) for i in range(num_arrows)]
arrows_vgroup = VGroup(*arrows)
self.play(ShowCreation(arrows_vgroup), run_time = 2.5, rate_func = None)
self.wait()
class FuncRotater(Animation):
CONFIG = {
"rotate_func" : lambda x : x # Func from alpha to revolutions
}
# Perhaps abstract this out into an "Animation updating from original object" class
def update_submobject(self, submobject, starting_submobject, alpha):
submobject.points = np.array(starting_submobject.points)
def update_mobject(self, alpha):
Animation.update_mobject(self, alpha)
angle_revs = self.rotate_func(alpha)
# We do a clockwise rotation
self.mobject.rotate(
-angle_revs * TAU,
about_point = ORIGIN
)
self.mobject.set_color(rev_to_color(angle_revs))
class TestRotater(Scene):
def construct(self):
test_line = Line(ORIGIN, RIGHT)
self.play(FuncRotater(
test_line,
rotate_func = lambda x : x % 0.25,
run_time = 10))
# TODO: Be careful about clockwise vs. counterclockwise convention throughout!
# Make sure this is correct everywhere in resulting video.
class OdometerScene(Scene):
CONFIG = {
"rotate_func" : lambda x : np.sin(x * TAU),
"run_time" : 5,
"dashed_line_angle" : None,
"biased_display_start" : None
}
def construct(self):
radius = 1.3
circle = Circle(center = ORIGIN, radius = radius)
self.add(circle)
if self.dashed_line_angle:
dashed_line = DashedLine(ORIGIN, radius * RIGHT)
# Clockwise rotation
dashed_line.rotate(-self.dashed_line_angle * TAU, about_point = ORIGIN)
self.add(dashed_line)
num_display = DecimalNumber(0, include_background_rectangle = True)
num_display.move_to(2 * DOWN)
display_val_bias = 0
if self.biased_display_start != None:
display_val_bias = self.biased_display_start - self.rotate_func(0)
display_func = lambda alpha : self.rotate_func(alpha) + display_val_bias
base_arrow = Arrow(ORIGIN, RIGHT, buff = 0)
self.play(
FuncRotater(base_arrow, rotate_func = self.rotate_func),
ChangingDecimal(num_display, display_func),
run_time = self.run_time,
rate_func = None)
#############
# Above are mostly general tools; here, we list, in order, finished or near-finished scenes
class FirstSqrtScene(EquationSolver1d):
CONFIG = {
"x_min" : 0,
"x_max" : 2.5,
"y_min" : 0,
"y_max" : 2.5**2,
"graph_origin" : 2*DOWN + 5 * LEFT,
"x_axis_width" : 12,
"zoom_factor" : 3,
"zoomed_canvas_center" : 2.25 * UP + 1.75 * LEFT,
"func" : lambda x : x**2,
"targetX" : np.sqrt(2),
"targetY" : 2,
"initial_lower_x" : 1,
"initial_upper_x" : 2,
"num_iterations" : 10,
"iteration_at_which_to_start_zoom" : 3,
"graph_label" : "y = x^2",
"show_target_line" : True,
}
class SecondSqrtScene(FirstSqrtScene, ReconfigurableScene):
# TODO: Don't bother with ReconfigurableScene; just use new config from start
# (But can also use this as written, and just cut into middle in Premiere)
def setup(self):
FirstSqrtScene.setup(self)
ReconfigurableScene.setup(self)
def construct(self):
shiftVal = self.targetY
self.drawGraph()
newOrigin = self.coords_to_point(0, shiftVal)
self.transition_to_alt_config(
func = lambda x : x**2 - shiftVal,
targetY = 0,
graph_label = "y = x^2 - " + str(shiftVal),
y_min = self.y_min - shiftVal,
y_max = self.y_max - shiftVal,
show_target_line = False,
graph_origin = newOrigin)
self.solveEquation()
# TODO: Pi creatures intrigued
class ComplexPlaneIs2d(Scene):
def construct(self):
com_plane = ComplexPlane()
self.add(com_plane)
# TODO: Add labels to axes, specific complex points
self.wait()
class NumberLineScene(Scene):
def construct(self):
num_line = NumberLine()
self.add(num_line)
# TODO: Add labels, arrows, specific points
self.wait()
border_color = PURPLE_E
inner_color = RED
stroke_width = 10
left_point = num_line.number_to_point(-1)
right_point = num_line.number_to_point(1)
# TODO: Make this line a thin rectangle
interval_1d = Line(left_point, right_point,
stroke_color = inner_color, stroke_width = stroke_width)
rect_1d = Rectangle(stroke_width = 0, fill_opacity = 1, fill_color = inner_color)
rect_1d.replace(interval_1d)
rect_1d.stretch_to_fit_height(SMALL_BUFF)
left_dot = Dot(left_point, stroke_width = stroke_width, color = border_color)
right_dot = Dot(right_point, stroke_width = stroke_width, color = border_color)
endpoints_1d = VGroup(left_dot, right_dot)
full_1d = VGroup(rect_1d, endpoints_1d)
self.play(ShowCreation(full_1d))
self.wait()
# TODO: Can polish the morphing above; have dots become left and right sides, and
# only then fill in the top and bottom
num_plane = NumberPlane()
random_points = [UP + LEFT, UP + RIGHT, DOWN + RIGHT, DOWN + LEFT]
border_2d = Polygon(
*random_points,
stroke_color = border_color,
stroke_width = stroke_width)
filling_2d = Polygon(
*random_points,
fill_color = inner_color,
fill_opacity = 0.8,
stroke_width = stroke_width)
full_2d = VGroup(filling_2d, border_2d)
self.play(
FadeOut(num_line),
FadeIn(num_plane),
ReplacementTransform(full_1d, full_2d))
self.wait()
initial_2d_func = point_func_from_complex_func(lambda c : np.exp(c))
class Initial2dFuncSceneMorphing(Scene):
CONFIG = {
"num_needed_anchor_points" : 10,
"func" : initial_2d_func,
}
def setup(self):
split_line = DashedLine(SPACE_HEIGHT * UP, SPACE_HEIGHT * DOWN)
self.num_plane = NumberPlane(x_radius = SPACE_WIDTH/2)
self.num_plane.to_edge(LEFT, buff = 0)
self.num_plane.prepare_for_nonlinear_transform()
self.add(self.num_plane, split_line)
def squash_onto_left(self, object):
object.shift(SPACE_WIDTH/2 * LEFT)
def squash_onto_right(self, object):
object.shift(SPACE_WIDTH/2 * RIGHT)
def obj_draw(self, input_object):
output_object = input_object.copy()
if input_object.get_num_anchor_points() < self.num_needed_anchor_points:
input_object.insert_n_anchor_points(self.num_needed_anchor_points)
output_object.apply_function(self.func)
self.squash_onto_left(input_object)
self.squash_onto_right(output_object)
self.play(
ShowCreation(input_object),
ShowCreation(output_object)
)
def construct(self):
right_plane = self.num_plane.copy()
right_plane.center()
right_plane.prepare_for_nonlinear_transform()
right_plane.apply_function(self.func)
right_plane.shift(SPACE_WIDTH/2 * RIGHT)
self.right_plane = right_plane
crappy_cropper = FullScreenFadeRectangle(fill_opacity = 1)
crappy_cropper.stretch_to_fit_width(SPACE_WIDTH)
crappy_cropper.to_edge(LEFT, buff = 0)
self.play(
ReplacementTransform(self.num_plane.copy(), right_plane),
FadeIn(crappy_cropper),
Animation(self.num_plane),
run_time = 3
)
points = [LEFT + DOWN, RIGHT + DOWN, LEFT + UP, RIGHT + UP]
for i in range(len(points) - 1):
line = Line(points[i], points[i + 1], color = RED)
self.obj_draw(line)
# Alternative to the above, using MappingCameras, but no morphing animation
class Initial2dFuncSceneWithoutMorphing(Scene):
def setup(self):
left_camera = Camera(**self.camera_config)
right_camera = MappingCamera(
mapping_func = initial_2d_func,
**self.camera_config)
split_screen_camera = SplitScreenCamera(left_camera, right_camera, **self.camera_config)
self.camera = split_screen_camera
def construct(self):
num_plane = NumberPlane()
num_plane.prepare_for_nonlinear_transform()
#num_plane.fade()
self.add(num_plane)
points = [LEFT + DOWN, RIGHT + DOWN, LEFT + UP, RIGHT + UP]
for i in range(len(points) - 1):
line = Line(points[i], points[i + 1], color = RED)
self.play(ShowCreation(line))
# TODO: Illustrations for introducing domain coloring
# TODO: Bunch of Pi walker scenes
# TODO: An odometer scene when introducing winding numbers
# (Just set up an OdometerScene with function matching the walking of the Pi
# creature from previous scene, then place it as a simultaneous inset with Premiere)
class LoopSplitScene(Scene):
CONFIG = {
"output_func" : plane_poly_with_roots((1, 1))
}
def PulsedLine(self,
start, end,
bullet_template,
num_bullets = 4,
pulse_time = 1,
**kwargs):
line = Line(start, end, **kwargs)
anim = LinePulser(
line = line,
bullet_template = bullet_template,
num_bullets = num_bullets,
pulse_time = pulse_time,
output_func = self.output_func,
**kwargs)
return [VGroup(line, *anim.bullets), anim]
def construct(self):
num_plane = NumberPlane(color = LIGHT_GREY, stroke_width = 1)
# We actually don't want to highlight
num_plane.axes.set_stroke(color = WHITE, width = 2)
num_plane.fade()
self.add(num_plane)
scale_factor = 2
shift_term = 0
# Original loop
tl = scale_factor * (UP + LEFT) + shift_term
tm = scale_factor * UP + shift_term
tr = scale_factor * (UP + RIGHT) + shift_term
mr = scale_factor * RIGHT + shift_term
br = scale_factor * (DOWN + RIGHT) + shift_term
bm = scale_factor * DOWN + shift_term
bl = scale_factor * (DOWN + LEFT) + shift_term
lm = scale_factor * LEFT + shift_term
loop_color = BLUE
default_bullet = PiCreature(color = RED)
default_bullet.scale(0.15)
modified_bullet = PiCreature(color = PINK)
modified_bullet.scale(0.15)
def SGroup(*args):
return VGroup(*[arg[0] for arg in args])
top_line = self.PulsedLine(tl, tr, default_bullet, color = BLUE)
right_line = self.PulsedLine(tr, br, modified_bullet, color = BLUE)
bottom_line = self.PulsedLine(br, bl, default_bullet, color = BLUE)
left_line = self.PulsedLine(bl, tl, default_bullet, color = BLUE)
line_list = [top_line, right_line, bottom_line, left_line]
loop = SGroup(*line_list)
for line in line_list:
self.add(*line)
self.wait()
# Splits in middle
split_line = DashedLine(interpolate(tl, tr, 0.5), interpolate(bl, br, 0.5))
self.play(ShowCreation(split_line))
self.remove(*split_line)
mid_line_left = self.PulsedLine(tm, bm, default_bullet, color = loop_color)
mid_line_right = self.PulsedLine(bm, tm, modified_bullet, color = loop_color)
self.add(*mid_line_left)
self.add(*mid_line_right)
top_line_left_half = self.PulsedLine(tl, tm, default_bullet, 2, 1, color = loop_color)
top_line_right_half = self.PulsedLine(tm, tr, modified_bullet, 2, 1, color = loop_color)
bottom_line_left_half = self.PulsedLine(bm, bl, default_bullet, 2, 1, color = loop_color)
bottom_line_right_half = self.PulsedLine(br, bm, modified_bullet, 2, 1, color = loop_color)
self.remove(*top_line)
self.add(*top_line_left_half)
self.add(*top_line_right_half)
self.remove(*bottom_line)
self.add(*bottom_line_left_half)
self.add(*bottom_line_right_half)
left_open_loop = SGroup(top_line_left_half, left_line, bottom_line_left_half)
left_closed_loop = VGroup(left_open_loop, mid_line_left[0])
right_open_loop = SGroup(top_line_right_half, right_line, bottom_line_right_half)
right_closed_loop = VGroup(right_open_loop, mid_line_right[0])
# self.play(
# ApplyMethod(left_closed_loop.shift, LEFT),
# ApplyMethod(right_closed_loop.shift, RIGHT)
# )
self.wait()
# self.play(
# ApplyMethod(left_open_loop.shift, LEFT),
# ApplyMethod(right_open_loop.shift, RIGHT)
# )
self.wait()
mid_lines = SGroup(mid_line_left, mid_line_right)
highlight_circle = Circle(color = YELLOW_E) # Perhaps make this a dashed circle?
highlight_circle.surround(mid_lines)
self.play(Indicate(mid_lines), ShowCreation(highlight_circle, run_time = 0.5))
self.wait()
self.play(FadeOut(highlight_circle), FadeOut(mid_lines))
# Because FadeOut didn't remove the continual pulsers, we remove them manually
self.remove(mid_line_left[1], mid_line_right[1])
# Brings loop back together; keep in sync with motions which bring loop apart above
# self.play(
# ApplyMethod(left_open_loop.shift, 2 * RIGHT),
# ApplyMethod(right_open_loop.shift, 2 * LEFT)
# )
self.wait()
# Is there a way to abstract this into a general process to derive a new mapped scene from an old scene?
class LoopSplitSceneMapped(LoopSplitScene):
def setup(self):
left_camera = Camera(**self.camera_config)
right_camera = MappingCamera(
mapping_func = lambda (x, y, z) : complex_to_R3(((complex(x,y) + 3)**1.1) - 3),
**self.camera_config)
split_screen_camera = SplitScreenCamera(left_camera, right_camera, **self.camera_config)
self.camera = split_screen_camera
# TODO: Perhaps do extra illustration of zooming out and winding around a large circle,
# to illustrate relation between degree and large-scale winding number
class FundThmAlg(EquationSolver2d):
CONFIG = {
"func" : plane_poly_with_roots((1, 2), (-1, 1.5), (-1, 1.5)),
"num_iterations" : 10,
}
# TODO: Borsuk-Ulam visuals
# Note: May want to do an ordinary square scene, then MappingCamera it into a circle
# class BorsukUlamScene(PiWalker):
# 3-way scene of "Good enough"-illustrating odometers; to be composed in Premiere
left_func = lambda x : x**2 - x + 1
diff_func = lambda x : np.cos(1.4 * (x - 0.1) * (np.log(x + 0.1) - 0.3) * TAU)/2.1
class LeftOdometer(OdometerScene):
CONFIG = {
"rotate_func" : left_func,
"biased_display_start" : 0
}
class RightOdometer(OdometerScene):
CONFIG = {
"rotate_func" : lambda x : left_func(x) + diff_func(x),
"biased_display_start" : 0
}
class DiffOdometer(OdometerScene):
CONFIG = {
"rotate_func" : diff_func,
"dashed_line_angle" : 0.5,
"biased_display_start" : 0
}
# TODO: Brouwer's fixed point theorem visuals
# class BFTScene(Scene):
# TODO: Pi creatures wide-eyed in amazement
#################
# TODOs, from easiest to hardest:
# Minor fiddling with little things in each animation; placements, colors, timing, text
# Initial odometer scene (simple once previous Pi walker scene is decided upon)
# Writing new Pi walker scenes by parametrizing general template
# ----
# Pi creature emotion stuff
# BFT visuals
# Borsuk-Ulam visuals
# Domain coloring
# TODO: Add to camera an option for low-quality background than other rendering, helpful
# for previews
# FIN