Files

926 lines
30 KiB
Python

import numpy as np
import itertools as it
from big_ol_pile_of_manim_imports import *
from old_projects.brachistochrone.curves import \
Cycloid, PathSlidingScene, RANDY_SCALE_FACTOR, TryManyPaths
class Lens(Arc):
CONFIG = {
"radius" : 2,
"angle" : np.pi/2,
"color" : BLUE_B,
}
def __init__(self, **kwargs):
digest_config(self, kwargs)
Arc.__init__(self, self.angle, **kwargs)
def generate_points(self):
Arc.generate_points(self)
self.rotate(-np.pi/4)
self.shift(-self.get_left())
self.add_points(self.copy().rotate(np.pi).points)
class PhotonScene(Scene):
def wavify(self, mobject):
result = mobject.copy()
result.ingest_submobjects()
tangent_vectors = result.points[1:]-result.points[:-1]
lengths = np.apply_along_axis(
get_norm, 1, tangent_vectors
)
thick_lengths = lengths.repeat(3).reshape((len(lengths), 3))
unit_tangent_vectors = tangent_vectors/thick_lengths
rot_matrix = np.transpose(rotation_matrix(np.pi/2, OUT))
normal_vectors = np.dot(unit_tangent_vectors, rot_matrix)
# total_length = np.sum(lengths)
times = np.cumsum(lengths)
nudge_sizes = 0.1*np.sin(2*np.pi*times)
thick_nudge_sizes = nudge_sizes.repeat(3).reshape((len(nudge_sizes), 3))
nudges = thick_nudge_sizes*normal_vectors
result.points[1:] += nudges
return result
def photon_run_along_path(self, path, color = YELLOW, **kwargs):
if "rate_func" not in kwargs:
kwargs["rate_func"] = None
photon = self.wavify(path)
photon.set_color(color)
return ShowPassingFlash(photon, **kwargs)
class SimplePhoton(PhotonScene):
def construct(self):
text = TextMobject("Light")
text.to_edge(UP)
self.play(ShimmerIn(text))
self.play(self.photon_run_along_path(
Cycloid(), rate_func=linear
))
self.wait()
class MultipathPhotonScene(PhotonScene):
CONFIG = {
"num_paths" : 5
}
def run_along_paths(self, **kwargs):
paths = self.get_paths()
colors = Color(YELLOW).range_to(WHITE, len(paths))
for path, color in zip(paths, colors):
path.set_color(color)
photon_runs = [
self.photon_run_along_path(path)
for path in paths
]
for photon_run, path in zip(photon_runs, paths):
self.play(
photon_run,
ShowCreation(
path,
rate_func = lambda t : 0.9*smooth(t)
),
**kwargs
)
self.wait()
def generate_paths(self):
raise Exception("Not Implemented")
class PhotonThroughLens(MultipathPhotonScene):
def construct(self):
self.lens = Lens()
self.add(self.lens)
self.run_along_paths()
def get_paths(self):
interval_values = np.arange(self.num_paths).astype('float')
interval_values /= (self.num_paths-1.)
first_contact = [
self.lens.point_from_proportion(0.4*v+0.55)
for v in reversed(interval_values)
]
second_contact = [
self.lens.point_from_proportion(0.3*v + 0.1)
for v in interval_values
]
focal_point = 2*RIGHT
return [
Mobject(
Line(FRAME_X_RADIUS*LEFT + fc[1]*UP, fc),
Line(fc, sc),
Line(sc, focal_point),
Line(focal_point, 6*focal_point-5*sc)
).ingest_submobjects()
for fc, sc in zip(first_contact, second_contact)
]
class TransitionToOptics(PhotonThroughLens):
def construct(self):
optics = TextMobject("Optics")
optics.to_edge(UP)
self.add(optics)
self.has_started = False
PhotonThroughLens.construct(self)
def play(self, *args, **kwargs):
if not self.has_started:
self.has_started = True
everything = Mobject(*self.mobjects)
vect = FRAME_WIDTH*RIGHT
everything.shift(vect)
self.play(ApplyMethod(
everything.shift, -vect,
rate_func = rush_from
))
Scene.play(self, *args, **kwargs)
class PhotonOffMirror(MultipathPhotonScene):
def construct(self):
self.mirror = Line(*FRAME_Y_RADIUS*np.array([DOWN, UP]))
self.mirror.set_color(GREY)
self.add(self.mirror)
self.run_along_paths()
def get_paths(self):
interval_values = np.arange(self.num_paths).astype('float')
interval_values /= (self.num_paths-1)
anchor_points = [
self.mirror.point_from_proportion(0.6*v+0.3)
for v in interval_values
]
start_point = 5*LEFT+3*UP
end_points = []
for point in anchor_points:
vect = start_point-point
vect[1] *= -1
end_points.append(point+2*vect)
return [
Mobject(
Line(start_point, anchor_point),
Line(anchor_point, end_point)
).ingest_submobjects()
for anchor_point, end_point in zip(anchor_points, end_points)
]
class PhotonsInWater(MultipathPhotonScene):
def construct(self):
water = Region(lambda x, y : y < 0, color = BLUE_E)
self.add(water)
self.run_along_paths()
def get_paths(self):
x, y = -3, 3
start_point = x*RIGHT + y*UP
angles = np.arange(np.pi/18, np.pi/3, np.pi/18)
midpoints = y*np.arctan(angles)
end_points = midpoints + FRAME_Y_RADIUS*np.arctan(2*angles)
return [
Mobject(
Line(start_point, [midpoint, 0, 0]),
Line([midpoint, 0, 0], [end_point, -FRAME_Y_RADIUS, 0])
).ingest_submobjects()
for midpoint, end_point in zip(midpoints, end_points)
]
class ShowMultiplePathsScene(PhotonScene):
def construct(self):
text = TextMobject("Which path minimizes travel time?")
text.to_edge(UP)
self.generate_start_and_end_points()
point_a = Dot(self.start_point)
point_b = Dot(self.end_point)
A = TextMobject("A").next_to(point_a, UP)
B = TextMobject("B").next_to(point_b, DOWN)
paths = self.get_paths()
for point, letter in [(point_a, A), (point_b, B)]:
self.play(
ShowCreation(point),
ShimmerIn(letter)
)
self.play(ShimmerIn(text))
curr_path = paths[0].copy()
curr_path_copy = curr_path.copy().ingest_submobjects()
self.play(
self.photon_run_along_path(curr_path),
ShowCreation(curr_path_copy, rate_func = rush_into)
)
self.remove(curr_path_copy)
for path in paths[1:] + [paths[0]]:
self.play(Transform(curr_path, path, run_time = 4))
self.wait()
self.path = curr_path.ingest_submobjects()
def generate_start_and_end_points(self):
raise Exception("Not Implemented")
def get_paths(self):
raise Exception("Not implemented")
class ShowMultiplePathsThroughLens(ShowMultiplePathsScene):
def construct(self):
self.lens = Lens()
self.add(self.lens)
ShowMultiplePathsScene.construct(self)
def generate_start_and_end_points(self):
self.start_point = 3*LEFT + UP
self.end_point = 2*RIGHT
def get_paths(self):
alphas = [0.25, 0.4, 0.58, 0.75]
lower_right, upper_right, upper_left, lower_left = list(map(
self.lens.point_from_proportion, alphas
))
return [
Mobject(
Line(self.start_point, a),
Line(a, b),
Line(b, self.end_point)
).set_color(color)
for (a, b), color in zip(
[
(upper_left, upper_right),
(upper_left, lower_right),
(lower_left, lower_right),
(lower_left, upper_right),
],
Color(YELLOW).range_to(WHITE, 4)
)
]
class ShowMultiplePathsOffMirror(ShowMultiplePathsScene):
def construct(self):
mirror = Line(*FRAME_Y_RADIUS*np.array([DOWN, UP]))
mirror.set_color(GREY)
self.add(mirror)
ShowMultiplePathsScene.construct(self)
def generate_start_and_end_points(self):
self.start_point = 4*LEFT + 2*UP
self.end_point = 4*LEFT + 2*DOWN
def get_paths(self):
return [
Mobject(
Line(self.start_point, midpoint),
Line(midpoint, self.end_point)
).set_color(color)
for midpoint, color in zip(
[2*UP, 2*DOWN],
Color(YELLOW).range_to(WHITE, 2)
)
]
class ShowMultiplePathsInWater(ShowMultiplePathsScene):
def construct(self):
glass = Region(lambda x, y : y < 0, color = BLUE_E)
self.generate_start_and_end_points()
straight = Line(self.start_point, self.end_point)
slow = TextMobject("Slow")
slow.rotate(np.arctan(straight.get_slope()))
slow.shift(straight.points[int(0.7*straight.get_num_points())])
slow.shift(0.5*DOWN)
too_long = TextMobject("Too long")
too_long.shift(UP)
air = TextMobject("Air").shift(2*UP)
water = TextMobject("Water").shift(2*DOWN)
self.add(glass)
self.play(GrowFromCenter(air))
self.play(GrowFromCenter(water))
self.wait()
self.remove(air, water)
ShowMultiplePathsScene.construct(self)
self.play(
Transform(self.path, straight)
)
self.wait()
self.play(GrowFromCenter(slow))
self.wait()
self.remove(slow)
self.leftmost.ingest_submobjects()
self.play(Transform(self.path, self.leftmost, run_time = 3))
self.wait()
self.play(ShimmerIn(too_long))
self.wait()
def generate_start_and_end_points(self):
self.start_point = 3*LEFT + 2*UP
self.end_point = 3*RIGHT + 2*DOWN
def get_paths(self):
self.leftmost, self.rightmost = result = [
Mobject(
Line(self.start_point, midpoint),
Line(midpoint, self.end_point)
).set_color(color)
for midpoint, color in zip(
[3*LEFT, 3*RIGHT],
Color(YELLOW).range_to(WHITE, 2)
)
]
return result
class StraightLinesFastestInConstantMedium(PhotonScene):
def construct(self):
kwargs = {"size" : "\\Large"}
left = TextMobject("Speed of light is constant", **kwargs)
arrow = TexMobject("\\Rightarrow", **kwargs)
right = TextMobject("Staight path is fastest", **kwargs)
left.next_to(arrow, LEFT)
right.next_to(arrow, RIGHT)
squaggle, line = self.get_paths()
self.play(*list(map(ShimmerIn, [left, arrow, right])))
self.play(ShowCreation(squaggle))
self.play(self.photon_run_along_path(
squaggle, run_time = 2, rate_func=linear
))
self.play(Transform(
squaggle, line,
path_func = path_along_arc(np.pi)
))
self.play(self.photon_run_along_path(line, rate_func=linear))
self.wait()
def get_paths(self):
squaggle = ParametricFunction(
lambda t : (0.5*t+np.cos(t))*RIGHT+np.sin(t)*UP,
start = -np.pi,
end = 2*np.pi
)
squaggle.shift(2*UP)
start, end = squaggle.points[0], squaggle.points[-1]
line = Line(start, end)
result = [squaggle, line]
for mob in result:
mob.set_color(BLUE_D)
return result
class PhtonBendsInWater(PhotonScene, ZoomedScene):
def construct(self):
glass = Region(lambda x, y : y < 0, color = BLUE_E)
kwargs = {
"density" : self.zoom_factor*DEFAULT_POINT_DENSITY_1D
}
top_line = Line(FRAME_Y_RADIUS*UP+2*LEFT, ORIGIN, **kwargs)
extension = Line(ORIGIN, FRAME_Y_RADIUS*DOWN+2*RIGHT, **kwargs)
bottom_line = Line(ORIGIN, FRAME_Y_RADIUS*DOWN+RIGHT, **kwargs)
path1 = Mobject(top_line, extension)
path2 = Mobject(top_line, bottom_line)
for mob in path1, path2:
mob.ingest_submobjects()
extension.set_color(RED)
theta1 = np.arctan(bottom_line.get_slope())
theta2 = np.arctan(extension.get_slope())
arc = Arc(theta2-theta1, start_angle = theta1, radius = 2)
question_mark = TextMobject("$\\theta$?")
question_mark.shift(arc.get_center()+0.5*DOWN+0.25*RIGHT)
wave = self.wavify(path2)
wave.set_color(YELLOW)
wave.scale(0.5)
self.add(glass)
self.play(ShowCreation(path1))
self.play(Transform(path1, path2))
self.wait()
# self.activate_zooming()
self.wait()
self.play(ShowPassingFlash(
wave, run_time = 3, rate_func=linear
))
self.wait()
self.play(ShowCreation(extension))
self.play(
ShowCreation(arc),
ShimmerIn(question_mark)
)
class LightIsFasterInAirThanWater(ShowMultiplePathsInWater):
def construct(self):
glass = Region(lambda x, y : y < 0, color = BLUE_E)
equation = TexMobject("v_{\\text{air}} > v_{\\text{water}}")
equation.to_edge(UP)
path = Line(FRAME_X_RADIUS*LEFT, FRAME_X_RADIUS*RIGHT)
path1 = path.copy().shift(2*UP)
path2 = path.copy().shift(2*DOWN)
self.add(glass)
self.play(ShimmerIn(equation))
self.wait()
photon_runs = []
photon_runs.append(self.photon_run_along_path(
path1, rate_func = lambda t : min(1, 1.2*t)
))
photon_runs.append(self.photon_run_along_path(path2))
self.play(*photon_runs, **{"run_time" : 2})
self.wait()
class GeometryOfGlassSituation(ShowMultiplePathsInWater):
def construct(self):
glass = Region(lambda x, y : y < 0, color = BLUE_E)
self.generate_start_and_end_points()
left = self.start_point[0]*RIGHT
right = self.end_point[0]*RIGHT
start_x = interpolate(left, right, 0.2)
end_x = interpolate(left, right, 1.0)
left_line = Line(self.start_point, left, color = RED_D)
right_line = Line(self.end_point, right, color = RED_D)
h_1, h_2 = list(map(TexMobject, ["h_1", "h_2"]))
h_1.next_to(left_line, LEFT)
h_2.next_to(right_line, RIGHT)
point_a = Dot(self.start_point)
point_b = Dot(self.end_point)
A = TextMobject("A").next_to(point_a, UP)
B = TextMobject("B").next_to(point_b, DOWN)
x = start_x
left_brace = Brace(Mobject(Point(left), Point(x)))
right_brace = Brace(Mobject(Point(x), Point(right)), UP)
x_mob = TexMobject("x")
x_mob.next_to(left_brace, DOWN)
w_minus_x = TexMobject("w-x")
w_minus_x.next_to(right_brace, UP)
top_line = Line(self.start_point, x)
bottom_line = Line(x, self.end_point)
top_dist = TexMobject("\\sqrt{h_1^2+x^2}")
top_dist.scale(0.5)
a = 0.3
n = top_line.get_num_points()
point = top_line.points[int(a*n)]
top_dist.next_to(Point(point), RIGHT, buff = 0.3)
bottom_dist = TexMobject("\\sqrt{h_2^2+(w-x)^2}")
bottom_dist.scale(0.5)
n = bottom_line.get_num_points()
point = bottom_line.points[int((1-a)*n)]
bottom_dist.next_to(Point(point), LEFT, buff = 1)
end_top_line = Line(self.start_point, end_x)
end_bottom_line = Line(end_x, self.end_point)
end_brace = Brace(Mobject(Point(left), Point(end_x)))
end_x_mob = TexMobject("x").next_to(end_brace, DOWN)
axes = Mobject(
NumberLine(),
NumberLine().rotate(np.pi/2).shift(7*LEFT)
)
graph = FunctionGraph(
lambda x : 0.4*(x+1)*(x-3)+4,
x_min = -2,
x_max = 4
)
graph.set_color(YELLOW)
Mobject(axes, graph).scale(0.2).to_corner(UP+RIGHT, buff = 1)
axes.add(TexMobject("x", size = "\\small").next_to(axes, RIGHT))
axes.add(TextMobject("Travel time", size = "\\small").next_to(
axes, UP
))
new_graph = graph.copy()
midpoint = new_graph.points[new_graph.get_num_points()/2]
new_graph.filter_out(lambda p : p[0] < midpoint[0])
new_graph.reverse_points()
pairs_for_end_transform = [
(mob, mob.copy())
for mob in (top_line, bottom_line, left_brace, x_mob)
]
self.add(glass, point_a, point_b, A, B)
line = Mobject(top_line, bottom_line).ingest_submobjects()
self.play(ShowCreation(line))
self.wait()
self.play(
GrowFromCenter(left_brace),
GrowFromCenter(x_mob)
)
self.play(
GrowFromCenter(right_brace),
GrowFromCenter(w_minus_x)
)
self.play(ShowCreation(left_line), ShimmerIn(h_1))
self.play(ShowCreation(right_line), GrowFromCenter(h_2))
self.play(ShimmerIn(top_dist))
self.play(GrowFromCenter(bottom_dist))
self.wait(3)
self.clear()
self.add(glass, point_a, point_b, A, B,
top_line, bottom_line, left_brace, x_mob)
self.play(ShowCreation(axes))
kwargs = {
"run_time" : 4,
}
self.play(*[
Transform(*pair, **kwargs)
for pair in [
(top_line, end_top_line),
(bottom_line, end_bottom_line),
(left_brace, end_brace),
(x_mob, end_x_mob)
]
]+[ShowCreation(graph, **kwargs)])
self.wait()
self.show_derivatives(graph)
line = self.show_derivatives(new_graph)
self.add(line)
self.play(*[
Transform(*pair, rate_func = lambda x : 0.3*smooth(x))
for pair in pairs_for_end_transform
])
self.wait()
def show_derivatives(self, graph, run_time = 2):
step = self.frame_duration/run_time
for a in smooth(np.arange(0, 1-step, step)):
index = int(a*graph.get_num_points())
p1, p2 = graph.points[index], graph.points[index+1]
line = Line(LEFT, RIGHT)
line.rotate(angle_of_vector(p2-p1))
line.shift(p1)
self.add(line)
self.wait(self.frame_duration)
self.remove(line)
return line
class Spring(Line):
CONFIG = {
"num_loops" : 5,
"loop_radius" : 0.3,
"color" : GREY
}
def generate_points(self):
## self.start, self.end
length = get_norm(self.end-self.start)
angle = angle_of_vector(self.end-self.start)
micro_radius = self.loop_radius/length
m = 2*np.pi*(self.num_loops+0.5)
def loop(t):
return micro_radius*(
RIGHT + np.cos(m*t)*LEFT + np.sin(m*t)*UP
)
new_epsilon = self.epsilon/(m*micro_radius)/length
self.add_points([
t*RIGHT + loop(t)
for t in np.arange(0, 1, new_epsilon)
])
self.scale(length/(1+2*micro_radius))
self.rotate(angle)
self.shift(self.start)
class SpringSetup(ShowMultiplePathsInWater):
def construct(self):
self.ring_shift_val = 6*RIGHT
self.slide_kwargs = {
"rate_func" : there_and_back,
"run_time" : 5
}
self.setup_background()
rod = Region(
lambda x, y : (abs(x) < 5) & (abs(y) < 0.05),
color = GOLD_E
)
ring = Arc(
angle = 11*np.pi/6,
start_angle = -11*np.pi/12,
radius = 0.2,
color = YELLOW
)
ring.shift(-self.ring_shift_val/2)
self.generate_springs(ring)
self.add_rod_and_ring(rod, ring)
self.slide_ring(ring)
self.wait()
self.add_springs()
self.add_force_definitions()
self.slide_system(ring)
self.show_horizontal_component(ring)
self.show_angles(ring)
self.show_equation()
def setup_background(self):
glass = Region(lambda x, y : y < 0, color = BLUE_E)
self.generate_start_and_end_points()
point_a = Dot(self.start_point)
point_b = Dot(self.end_point)
A = TextMobject("A").next_to(point_a, UP)
B = TextMobject("B").next_to(point_b, DOWN)
self.add(glass, point_a, point_b, A, B)
def generate_springs(self, ring):
self.start_springs, self.end_springs = [
Mobject(
Spring(self.start_point, r.get_top()),
Spring(self.end_point, r.get_bottom())
)
for r in (ring, ring.copy().shift(self.ring_shift_val))
]
def add_rod_and_ring(self, rod, ring):
rod_word = TextMobject("Rod")
rod_word.next_to(Point(), UP)
ring_word = TextMobject("Ring")
ring_word.next_to(ring, UP)
self.wait()
self.add(rod)
self.play(ShimmerIn(rod_word))
self.wait()
self.remove(rod_word)
self.play(ShowCreation(ring))
self.play(ShimmerIn(ring_word))
self.wait()
self.remove(ring_word)
def slide_ring(self, ring):
self.play(ApplyMethod(
ring.shift, self.ring_shift_val,
**self.slide_kwargs
))
def add_springs(self):
colors = iter([BLACK, BLUE_E])
for spring in self.start_springs.split():
circle = Circle(color = next(colors))
circle.reverse_points()
circle.scale(spring.loop_radius)
circle.shift(spring.points[0])
self.play(Transform(circle, spring))
self.remove(circle)
self.add(spring)
self.wait()
def add_force_definitions(self):
top_force = TexMobject("F_1 = \\dfrac{1}{v_{\\text{air}}}")
bottom_force = TexMobject("F_2 = \\dfrac{1}{v_{\\text{water}}}")
top_spring, bottom_spring = self.start_springs.split()
top_force.next_to(top_spring)
bottom_force.next_to(bottom_spring, DOWN, buff = -0.5)
words = TextMobject("""
The force in a real spring is
proportional to that spring's length
""")
words.to_corner(UP+RIGHT)
for force in top_force, bottom_force:
self.play(GrowFromCenter(force))
self.wait()
self.play(ShimmerIn(words))
self.wait(3)
self.remove(top_force, bottom_force, words)
def slide_system(self, ring):
equilibrium_slide_kwargs = dict(self.slide_kwargs)
def jiggle_to_equilibrium(t):
return 0.7*(1+((1-t)**2)*(-np.cos(10*np.pi*t)))
equilibrium_slide_kwargs = {
"rate_func" : jiggle_to_equilibrium,
"run_time" : 3
}
start = Mobject(ring, self.start_springs)
end = Mobject(
ring.copy().shift(self.ring_shift_val),
self.end_springs
)
for kwargs in self.slide_kwargs, equilibrium_slide_kwargs:
self.play(Transform(start, end, **kwargs))
self.wait()
def show_horizontal_component(self, ring):
v_right = Vector(ring.get_top(), RIGHT)
v_left = Vector(ring.get_bottom(), LEFT)
self.play(*list(map(ShowCreation, [v_right, v_left])))
self.wait()
self.remove(v_right, v_left)
def show_angles(self, ring):
ring_center = ring.get_center()
lines, arcs, thetas = [], [], []
counter = it.count(1)
for point in self.start_point, self.end_point:
line = Line(point, ring_center, color = GREY)
angle = np.pi/2-np.abs(np.arctan(line.get_slope()))
arc = Arc(angle, radius = 0.5).rotate(np.pi/2)
if point is self.end_point:
arc.rotate(np.pi)
theta = TexMobject("\\theta_%d"%next(counter))
theta.scale(0.5)
theta.shift(2*arc.get_center())
arc.shift(ring_center)
theta.shift(ring_center)
lines.append(line)
arcs.append(arc)
thetas.append(theta)
vert_line = Line(2*UP, 2*DOWN)
vert_line.shift(ring_center)
top_spring, bottom_spring = self.start_springs.split()
self.play(
Transform(ring, Point(ring_center)),
Transform(top_spring, lines[0]),
Transform(bottom_spring, lines[1])
)
self.play(ShowCreation(vert_line))
anims = []
for arc, theta in zip(arcs, thetas):
anims += [
ShowCreation(arc),
GrowFromCenter(theta)
]
self.play(*anims)
self.wait()
def show_equation(self):
equation = TexMobject([
"\\left(\\dfrac{1}{\\phantom{v_air}}\\right)",
"\\sin(\\theta_1)",
"=",
"\\left(\\dfrac{1}{\\phantom{v_water}}\\right)",
"\\sin(\\theta_2)"
])
equation.to_corner(UP+RIGHT)
frac1, sin1, equals, frac2, sin2 = equation.split()
v_air, v_water = [
TexMobject("v_{\\text{%s}}"%s, size = "\\Large")
for s in ("air", "water")
]
v_air.next_to(Point(frac1.get_center()), DOWN)
v_water.next_to(Point(frac2.get_center()), DOWN)
frac1.add(v_air)
frac2.add(v_water)
f1, f2 = [
TexMobject("F_%d"%d, size = "\\Large")
for d in (1, 2)
]
f1.next_to(sin1, LEFT)
f2.next_to(equals, RIGHT)
sin2_start = sin2.copy().next_to(f2, RIGHT)
bar1 = TexMobject("\\dfrac{\\qquad}{\\qquad}")
bar2 = bar1.copy()
bar1.next_to(sin1, DOWN)
bar2.next_to(sin2, DOWN)
v_air_copy = v_air.copy().next_to(bar1, DOWN)
v_water_copy = v_water.copy().next_to(bar2, DOWN)
bars = Mobject(bar1, bar2)
new_eq = equals.copy().center().shift(bars.get_center())
snells = TextMobject("Snell's Law")
snells.set_color(YELLOW)
snells.shift(new_eq.get_center()[0]*RIGHT)
snells.shift(UP)
anims = []
for mob in f1, sin1, equals, f2, sin2_start:
anims.append(ShimmerIn(mob))
self.play(*anims)
self.wait()
for f, frac in (f1, frac1), (f2, frac2):
target = frac.copy().ingest_submobjects()
also = []
if f is f2:
also.append(Transform(sin2_start, sin2))
sin2 = sin2_start
self.play(Transform(f, target), *also)
self.remove(f)
self.add(frac)
self.wait()
self.play(
FadeOut(frac1),
FadeOut(frac2),
Transform(v_air, v_air_copy),
Transform(v_water, v_water_copy),
ShowCreation(bars),
Transform(equals, new_eq)
)
self.wait()
frac1 = Mobject(sin1, bar1, v_air)
frac2 = Mobject(sin2, bar2, v_water)
for frac, vect in (frac1, LEFT), (frac2, RIGHT):
self.play(ApplyMethod(
frac.next_to, equals, vect
))
self.wait()
self.play(ShimmerIn(snells))
self.wait()
class WhatGovernsTheSpeedOfLight(PhotonScene, PathSlidingScene):
def construct(self):
randy = Randolph()
randy.scale(RANDY_SCALE_FACTOR)
randy.shift(-randy.get_bottom())
self.add_cycloid_end_points()
self.add(self.cycloid)
self.slide(randy, self.cycloid)
self.play(self.photon_run_along_path(self.cycloid))
self.wait()
class WhichPathWouldLightTake(PhotonScene, TryManyPaths):
def construct(self):
words = TextMobject(
["Which path ", "would \\emph{light} take", "?"]
)
words.split()[1].set_color(YELLOW)
words.to_corner(UP+RIGHT)
self.add_cycloid_end_points()
anims = [
self.photon_run_along_path(
path,
rate_func = smooth
)
for path in self.get_paths()
]
self.play(anims[0], ShimmerIn(words))
for anim in anims[1:]:
self.play(anim)
class StateSnellsLaw(PhotonScene):
def construct(self):
point_a = 3*LEFT+3*UP
point_b = 1.5*RIGHT+3*DOWN
midpoint = ORIGIN
lines, arcs, thetas = [], [], []
counter = it.count(1)
for point in point_a, point_b:
line = Line(point, midpoint, color = RED_D)
angle = np.pi/2-np.abs(np.arctan(line.get_slope()))
arc = Arc(angle, radius = 0.5).rotate(np.pi/2)
if point is point_b:
arc.rotate(np.pi)
line.reverse_points()
theta = TexMobject("\\theta_%d"%next(counter))
theta.scale(0.5)
theta.shift(2*arc.get_center())
arc.shift(midpoint)
theta.shift(midpoint)
lines.append(line)
arcs.append(arc)
thetas.append(theta)
vert_line = Line(2*UP, 2*DOWN)
vert_line.shift(midpoint)
path = Mobject(*lines).ingest_submobjects()
glass = Region(lambda x, y : y < 0, color = BLUE_E)
self.add(glass)
equation = TexMobject([
"\\dfrac{\\sin(\\theta_1)}{v_{\\text{air}}}",
"=",
"\\dfrac{\\sin(\\theta_2)}{v_{\\text{water}}}",
])
equation.to_corner(UP+RIGHT)
exp1, equals, exp2 = equation.split()
snells_law = TextMobject("Snell's Law:")
snells_law.set_color(YELLOW)
snells_law.to_edge(UP)
self.play(ShimmerIn(snells_law))
self.wait()
self.play(ShowCreation(path))
self.play(self.photon_run_along_path(path))
self.wait()
self.play(ShowCreation(vert_line))
self.play(*list(map(ShowCreation, arcs)))
self.play(*list(map(GrowFromCenter, thetas)))
self.wait()
self.play(ShimmerIn(exp1))
self.wait()
self.play(*list(map(ShimmerIn, [equals, exp2])))
self.wait()