Files
manim/active_projects/quaternions.py
2018-08-30 14:25:21 -07:00

5523 lines
167 KiB
Python

from big_ol_pile_of_manim_imports import *
# from pprint import pprint
# Helpers
def get_three_d_scene_config(high_quality=True):
hq_config = {
"camera_config": {
"should_apply_shading": True,
"exponential_projection": True,
},
"three_d_axes_config": {
"num_axis_pieces": 1,
"number_line_config": {
"unit_size": 2,
# "tick_frequency": 0.5,
"tick_frequency": 1,
"numbers_with_elongated_ticks": [0, 1, 2],
"stroke_width": 2,
}
},
"sphere_config": {
"radius": 2,
"resolution": (24, 48),
}
}
lq_added_config = {
"camera_config": {
"should_apply_shading": False,
},
"three_d_axes_config": {
"num_axis_pieces": 1,
},
"sphere_config": {
# "resolution": (4, 12),
}
}
if high_quality:
return hq_config
else:
return merge_config([
lq_added_config,
hq_config
])
def q_mult(q1, q2):
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return np.array([w, x, y, z])
def stereo_project_point(point, axis=0, r=1, max_norm=10000):
point = fdiv(point * r, point[axis] + r)
point[axis] = 0
norm = get_norm(point)
if norm > max_norm:
point *= max_norm / norm
return point
def stereo_project(mobject, axis=0, r=1, outer_r=10, **kwargs):
epsilon = 1
for submob in mobject.family_members_with_points():
points = submob.points
n = len(points)
for i in range(n):
if points[i, axis] == -r:
js = it.chain(
range(i + 1, n),
range(i - 1, -1, -1)
)
for j in js:
if points[j, axis] == -r:
continue
else:
vect = points[j] - points[i]
points[i] += epsilon * vect
break
submob.apply_function(
lambda p: stereo_project_point(p, axis, r, **kwargs)
)
# If all points are outside a certain range, this
# shouldn't be displayed
norms = np.apply_along_axis(get_norm, 1, submob.points)
if np.all(norms > outer_r):
# TODO, instead set opacity?
# submob.points[:, :] = 0
submob.set_fill(opacity=0)
submob.set_stroke(opacity=0)
return mobject
class Linus(VGroup):
CONFIG = {
"body_config": {
"stroke_width": 15,
"stroke_color": LIGHT_GREY,
"sheen": 0.4,
},
"height": 2,
}
def __init__(self, **kwargs):
VGroup.__init__(self, **kwargs)
self.body = self.get_body_line()
self.eyes = Eyes(self.body)
self.add(self.body, self.eyes)
self.set_height(self.height)
self.center()
def change_mode(self, mode, thing_to_look_at=None):
self.eyes.change_mode(mode, thing_to_look_at)
if mode == "sad":
self.become_squiggle()
elif mode == "confused":
self.become_squiggle(factor=-0.1)
elif mode == "pleading":
self.become_squiggle(factor=0.3)
else:
self.become_line()
return self
def change(self, *args, **kwargs):
self.change_mode(*args, **kwargs)
return self
def look_at(self, thing_to_look_at=None):
self.eyes.look_at(thing_to_look_at)
return self
def blink(self):
self.eyes.blink()
return self
def get_squiggle(self, factor=0.2):
sine_curve = FunctionGraph(
lambda x: factor * np.sin(x),
x_min=0, x_max=TAU,
)
sine_curve.rotate(TAU / 4)
sine_curve.match_style(self.body)
sine_curve.match_height(self.body)
sine_curve.move_to(self.body, UP)
return sine_curve
def get_body_line(self, **kwargs):
config = dict(self.body_config)
config.update(kwargs)
line = Line(ORIGIN, 1.5 * UP, **config)
if hasattr(self, "body"):
line.match_style(self.body)
line.match_height(self.body)
line.move_to(self.body, UP)
return line
def become_squiggle(self, **kwargs):
self.body.become(self.get_squiggle(**kwargs))
return self
def become_line(self, **kwargs):
self.body.become(self.get_body_line(**kwargs))
return self
def copy(self):
return self.deepcopy()
class Felix(PiCreature):
CONFIG = {
"color": GREEN_D
}
class PushPin(SVGMobject):
CONFIG = {
"file_name": "push_pin",
"height": 0.5,
"sheen": 0.7,
"fill_color": GREY,
}
def __init__(self, **kwargs):
SVGMobject.__init__(self, **kwargs)
self.rotate(20 * DEGREES)
def pin_to(self, point):
self.move_to(point, DR)
class Hand(SVGMobject):
CONFIG = {
"file_name": "pinch_hand",
"height": 0.4,
"sheen": 0.2,
"fill_color": GREY,
}
def __init__(self, **kwargs):
SVGMobject.__init__(self, **kwargs)
self.add(VectorizedPoint().next_to(self, UP, buff=0.15))
class CheckeredCircle(Circle):
CONFIG = {
"n_pieces": 16,
"colors": [BLUE_E, BLUE_C],
"stroke_width": 5,
}
def __init__(self, **kwargs):
Circle.__init__(self, **kwargs)
pieces = self.get_pieces(self.n_pieces)
self.points = np.zeros((0, 3))
self.add(*pieces)
n_colors = len(self.colors)
for i, color in enumerate(self.colors):
self[i::n_colors].set_color(color)
class StereoProjectedSphere(Sphere):
CONFIG = {
"stereo_project_config": {
"axis": 2,
},
"max_r": 32,
"max_width": FRAME_WIDTH,
"max_height": FRAME_WIDTH,
"max_depth": FRAME_WIDTH,
"radius": 1,
}
def __init__(self, rotation_matrix=None, **kwargs):
digest_config(self, kwargs)
if rotation_matrix is None:
rotation_matrix = np.identity(3)
self.rotation_matrix = rotation_matrix
self.stereo_project_config["r"] = self.radius
ParametricSurface.__init__(
self, self.post_projection_func, **kwargs
)
self.submobjects.sort(
key=lambda m: -m.get_width()
)
self.fade_far_out_submobjects()
def post_projection_func(self, u, v):
point = self.radius * Sphere.func(self, u, v)
rot_point = np.dot(point, self.rotation_matrix.T)
result = stereo_project_point(
rot_point, **self.stereo_project_config
)
epsilon = 1e-4
if np.any(np.abs(result) == np.inf) or np.any(np.isnan(result)):
return self.func(u + epsilon, v)
return result
def fade_far_out_submobjects(self, **kwargs):
max_r = kwargs.get("max_r", self.max_r)
max_width = kwargs.get("max_width", self.max_width)
max_height = kwargs.get("max_height", self.max_height)
max_depth = kwargs.get("max_depth", self.max_depth)
for submob in self.submobjects:
violations = [
np.any(np.apply_along_axis(get_norm, 1, submob.get_anchors()) > max_r),
submob.get_width() > max_width,
submob.get_height() > max_height,
submob.get_depth() > max_depth
]
if any(violations):
# self.remove(submob)
submob.fade(1)
return self
class StereoProjectedSphereFromHypersphere(StereoProjectedSphere):
CONFIG = {
"stereo_project_config": {
"axis": 0,
},
"radius": 2,
}
def __init__(self, quaternion=None, null_axis=0, **kwargs):
if quaternion is None:
quaternion = np.array([1, 0, 0, 0])
self.quaternion = quaternion
self.null_axis = null_axis
ParametricSurface.__init__(self, self.q_mult_projection_func, **kwargs)
self.fade_far_out_submobjects()
def q_mult_projection_func(self, u, v):
point = list(Sphere.func(self, u, v))
point.insert(self.null_axis, 0)
post_q_mult = q_mult(self.quaternion, point)
projected = list(self.radius * stereo_project_point(
post_q_mult, **self.stereo_project_config
))
if np.any(np.abs(projected) == np.inf):
return self.func(u + 0.001, v)
ignored_axis = self.stereo_project_config["axis"]
projected.pop(ignored_axis)
return np.array(projected)
class StereoProjectedCircleFromHypersphere(CheckeredCircle):
CONFIG = {
"n_pieces": 48,
"radius": 2,
"max_length": 2 * FRAME_WIDTH,
"max_r": 20,
"basis_vectors": [
[1, 0, 0, 0],
[0, 1, 0, 0],
]
}
def __init__(self, quaternion=None, **kwargs):
CheckeredCircle.__init__(self, **kwargs)
if quaternion is None:
quaternion = [1, 0, 0, 0]
self.quaternion = quaternion
self.pre_positioning_matrix = self.get_pre_positioning_matrix()
self.apply_function(self.projection)
self.remove_large_pieces()
self.set_shade_in_3d(True)
def get_pre_positioning_matrix(self):
v1, v2 = [np.array(v) for v in self.basis_vectors]
v1 = normalize(v1)
v2 = v2 - np.dot(v1, v2) * v1
v2 = normalize(v2)
return np.array([v1, v2]).T
def projection(self, point):
q1 = self.quaternion
q2 = np.dot(self.pre_positioning_matrix, point[:2]).flatten()
new_q = q_mult(q1, q2)
projected = stereo_project_point(
new_q, axis=0, r=self.radius,
)
if np.any(projected == np.inf) or np.any(np.isnan(projected)):
epsilon = 1e-6
return self.projection(rotate_vector(point, epsilon))
return projected[1:]
def remove_large_pieces(self):
for piece in self:
length = get_norm(piece.points[0] - piece.points[-1])
violations = [
length > self.max_length,
get_norm(piece.get_center()) > self.max_r,
]
if any(violations):
piece.fade(1)
class QuaternionTracker(ValueTracker):
CONFIG = {
"force_unit": True,
"dim": 4,
}
def __init__(self, four_vector=None, **kwargs):
Mobject.__init__(self, **kwargs)
if four_vector is None:
four_vector = np.array([1, 0, 0, 0])
self.set_value(four_vector)
if self.force_unit:
self.add_updater(lambda q: q.normalize())
def set_value(self, vector):
self.points = np.array(vector).reshape((1, 4))
return self
def get_value(self):
return self.points[0]
def normalize(self):
self.set_value(normalize(
self.get_value(),
fall_back=np.array([1, 0, 0, 0])
))
return self
class RubiksCube(VGroup):
CONFIG = {
"colors": [
"#C41E3A", "#009E60", "#0051BA",
"#FF5800", "#FFD500", "#FFFFFF"
],
}
def __init__(self, **kwargs):
digest_config(self, kwargs)
vectors = [OUT, RIGHT, UP, LEFT, DOWN, IN]
faces = [
self.create_face(color, vector)
for color, vector in zip(self.colors, vectors)
]
VGroup.__init__(self, *it.chain(*faces), **kwargs)
self.set_shade_in_3d(True)
def create_face(self, color, vector):
squares = VGroup(*[
self.create_square(color)
for x in range(9)
])
squares.arrange_submobjects_in_grid(
3, 3,
buff=0
)
squares.set_width(2)
squares.move_to(OUT, OUT)
squares.apply_matrix(z_to_vector(vector))
return squares
def create_square(self, color):
square = Square(
stroke_width=3,
stroke_color=BLACK,
fill_color=color,
fill_opacity=1,
side_length=1,
)
square.flip()
return square
# back = square.copy()
# back.set_fill(BLACK, 0.85)
# back.set_stroke(width=0)
# back.shift(0.5 * IN)
# return VGroup(square, back)
def get_face(self, vect):
self.sort_submobjects(lambda p: np.dot(p, vect))
return self[-(12 + 9):]
# Abstract scenes
class SpecialThreeDScene(ThreeDScene):
CONFIG = {
"cut_axes_at_radius": True,
}
def __init__(self, **kwargs):
digest_config(self, kwargs)
if self.frame_duration == PRODUCTION_QUALITY_FRAME_DURATION:
high_quality = True
else:
high_quality = False
config = get_three_d_scene_config(high_quality)
ThreeDScene.__init__(self, **config)
def get_axes(self):
axes = ThreeDAxes(**self.three_d_axes_config)
for axis in axes:
if self.cut_axes_at_radius:
p0 = axis.main_line.get_start()
p1 = axis.number_to_point(-1)
p2 = axis.number_to_point(1)
p3 = axis.main_line.get_end()
new_pieces = VGroup(
Line(p0, p1), Line(p1, p2), Line(p2, p3),
)
for piece in new_pieces:
piece.shade_in_3d = True
new_pieces.match_style(axis.pieces)
axis.pieces.submobjects = new_pieces.submobjects
for tick in axis.tick_marks:
tick.add(VectorizedPoint(
1.5 * tick.get_center(),
))
return axes
def get_sphere(self):
return Sphere(**self.sphere_config)
def get_default_camera_position(self):
return {
"phi": 70 * DEGREES,
"theta": -110 * DEGREES,
}
# Animated scenes
class ManyNumberSystems(Scene):
def construct(self):
# Too much dumb manually positioning in here...
title = Title("Number systems")
name_location_color_example_tuples = [
("Reals", [-4, 2, 0], YELLOW, "1.414"),
("Complex numbers", [5, 0, 0], BLUE, "2 + i"),
("Quaternions", [3, 2, 0], PINK, "2 + 7i + 1j + 8k"),
("Rationals", [3, -2, 0], RED, "1 \\over 3"),
("p-adic numbers", [-2, -2, 0], GREEN, "\\overline{142857}2"),
("Octonions", [-3, 0, 0], LIGHT_GREY, "3e_1 - 2.3e_2 + \\dots + 1.6e_8"),
]
systems = VGroup()
for name, location, color, ex in name_location_color_example_tuples:
system = TextMobject(name)
system.set_color(color)
system.move_to(location)
example = TexMobject(ex)
example.next_to(system, DOWN)
system.add(example)
systems.add(system)
R_label, C_label, H_label = systems[:3]
number_line = NumberLine(x_min=-3, x_max=3)
number_line.add_numbers()
number_line.shift(0.25 * FRAME_WIDTH * LEFT)
number_line.shift(0.5 * DOWN)
R_example_dot = Dot(number_line.number_to_point(1.414))
plane = ComplexPlane(x_radius=3.5, y_radius=2.5)
plane.add_coordinates()
plane.shift(0.25 * FRAME_WIDTH * RIGHT)
plane.shift(0.5 * DOWN)
C_example_dot = Dot(plane.coords_to_point(2, 1))
self.add(title)
self.play(LaggedStart(
FadeInFromLarge, systems,
lambda m: (m, 4)
))
self.wait()
self.add(number_line, plane, systems)
self.play(
R_label.move_to, 0.25 * FRAME_WIDTH * LEFT + 2 * UP,
C_label.move_to, 0.25 * FRAME_WIDTH * RIGHT + 2 * UP,
H_label.move_to, 0.75 * FRAME_WIDTH * RIGHT + 2 * UP,
FadeOutAndShift(systems[3:], 2 * DOWN),
Write(number_line),
Write(plane),
GrowFromCenter(R_example_dot),
R_label[-1].next_to, R_example_dot, UP,
GrowFromCenter(C_example_dot),
C_label[-1].next_to, C_example_dot, UR, SMALL_BUFF,
C_label[-1].shift, 0.4 * LEFT,
)
number_line.add(R_example_dot)
plane.add(C_example_dot)
self.wait(2)
self.play(LaggedStart(
ApplyMethod,
VGroup(
H_label,
VGroup(plane, C_label),
VGroup(number_line, R_label),
),
lambda m: (m.shift, 0.5 * FRAME_WIDTH * LEFT),
lag_ratio=0.8,
))
randy = Randolph()
randy.next_to(plane, RIGHT)
self.play(
randy.change, "maybe", H_label,
VFadeIn(randy),
)
self.play(Blink(randy))
self.play(randy.change, "confused", H_label.get_top())
self.wait()
class RotationsIn3d(SpecialThreeDScene):
def construct(self):
self.set_camera_orientation(**self.get_default_camera_position())
self.begin_ambient_camera_rotation(rate=0.02)
sphere = self.get_sphere()
vectors = VGroup(*[
Vector(u * v, color=color).next_to(sphere, u * v, buff=0)
for v, color in zip(
[RIGHT, UP, OUT],
[GREEN, RED, BLUE],
)
for u in [-1, 1]
])
vectors.set_shade_in_3d(True)
sphere.add(vectors)
self.add(self.get_axes())
self.add(sphere)
angle_axis_pairs = [
(90 * DEGREES, RIGHT),
(120 * DEGREES, UR),
(-45 * DEGREES, OUT),
(60 * DEGREES, IN + DOWN),
(90 * DEGREES, UP),
(30 * DEGREES, UP + OUT + RIGHT),
]
for angle, axis in angle_axis_pairs:
self.play(Rotate(
sphere, angle,
axis=axis,
run_time=2,
))
self.wait()
class TODOInsertIntroduceThreeDNumbers(TODOStub):
CONFIG = {"message": "Insert IntroduceThreeDNumbers"}
class IntroduceHamilton(Scene):
def construct(self):
hamilton = ImageMobject("Hamilton", height=6)
hamilton.to_corner(UL)
shamrock = SVGMobject(file_name="shamrock")
shamrock.set_height(1)
shamrock.set_color("#009a49")
shamrock.set_fill(opacity=0.25)
shamrock.next_to(hamilton.get_corner(UL), DR)
shamrock.align_to(hamilton, UP)
hamilton_name = TextMobject(
"William Rowan Hamilton"
)
hamilton_name.match_width(hamilton)
hamilton_name.next_to(hamilton, DOWN)
quote = TextMobject(
"""\\huge ...Every morning in the early part of the above-cited
month, on my coming down to breakfast, your (then)
little brother William Edwin, and yourself, used to
ask me,""",
"``Well, Papa, can you multiply triplets''?",
"""Whereto I was always obliged to reply, with a sad
shake of the head: ``No, I can only add and subtract
them.''...""",
alignment=""
)
quote.set_color_by_tex("Papa", YELLOW)
quote = VGroup(*it.chain(*quote))
quote.set_width(FRAME_WIDTH - hamilton.get_width() - 2)
quote.to_edge(RIGHT)
quote_rect = SurroundingRectangle(quote, buff=MED_SMALL_BUFF)
quote_rect.set_stroke(WHITE, 2)
quote_rect.stretch(1.1, 1)
quote_label = TextMobject(
"August 5, 1865 Letter\\\\from Hamilton to his son"
)
quote_label.next_to(quote_rect, UP)
quote_label.set_color(BLUE)
VGroup(quote, quote_rect, quote_label).to_edge(UP)
plaque = ImageMobject("BroomBridgePlaque")
plaque.set_width(FRAME_WIDTH / 2)
plaque.to_edge(LEFT)
plaque.shift(UP)
equation = TexMobject(
"i^2 = j^2 = k^2 = ijk = -1",
tex_to_color_map={"i": GREEN, "j": RED, "k": BLUE}
)
equation_rect = Rectangle(width=3.25, height=0.7)
equation_rect.move_to(3.15 * LEFT + 0.25 * DOWN)
equation_rect.set_color(WHITE)
equation_arrow = Vector(DOWN)
equation_arrow.match_color(equation_rect)
equation_arrow.next_to(equation_rect, DOWN)
equation.next_to(equation_arrow, DOWN)
self.play(
FadeInFromDown(hamilton),
Write(hamilton_name),
)
self.play(DrawBorderThenFill(shamrock))
self.wait()
self.play(
LaggedStart(
FadeIn, quote,
lag_ratio=0.2,
run_time=4
),
FadeInFromDown(quote_label),
ShowCreation(quote_rect)
)
self.wait(3)
self.play(
ApplyMethod(
VGroup(hamilton, shamrock, hamilton_name).to_edge, RIGHT,
run_time=2,
rate_func=squish_rate_func(smooth, 0.5, 1),
),
LaggedStart(
FadeOutAndShiftDown, VGroup(*it.chain(
quote, quote_rect, quote_label
))
)
)
self.wait()
self.play(FadeIn(plaque))
self.play(
ShowCreation(equation_rect),
GrowArrow(equation_arrow)
)
self.play(ReplacementTransform(
equation.copy().replace(equation_rect).fade(1),
equation
))
self.wait()
class QuaternionRotationOverlay(Scene):
def construct(self):
equations = VGroup(
TexMobject(
"p", "\\rightarrow",
"{}",
"{}",
"\\left(q_1",
"p",
"q_1^{-1}\\right)",
"{}",
"{}",
),
TexMobject(
"p", "\\rightarrow",
"{}",
"\\left(q_2",
"\\left(q_1",
"p",
"q_1^{-1}\\right)",
"q_2^{-1}\\right)",
"{}",
),
TexMobject(
"p", "\\rightarrow",
"\\left(q_3",
"\\left(q_2",
"\\left(q_1",
"p",
"q_1^{-1}\\right)",
"q_2^{-1}\\right)",
"q_3^{-1}\\right)",
),
)
for equation in equations:
equation.set_color_by_tex_to_color_map({
"1": GREEN, "2": RED, "3": BLUE,
})
equation.set_color_by_tex("rightarrow", WHITE)
equation.to_corner(UL)
equation = equations[0].copy()
self.play(Write(equation))
self.wait()
for new_equation in equations[1:]:
self.play(
Transform(equation, new_equation)
)
self.wait(2)
class RotateCubeThreeTimes(SpecialThreeDScene):
def construct(self):
cube = RubiksCube()
cube.set_fill(opacity=0.8)
cube.set_stroke(width=1)
randy = Randolph(mode="pondering")
randy.set_height(cube.get_height() - 2 * SMALL_BUFF)
randy.move_to(cube.get_edge_center(OUT))
randy.set_fill(opacity=0.8)
# randy.set_shade_in_3d(True)
cube.add(randy)
axes = self.get_axes()
self.add(axes, cube)
self.move_camera(
phi=70 * DEGREES,
theta=-140 * DEGREES,
)
self.begin_ambient_camera_rotation(rate=0.02)
self.wait(2)
self.play(Rotate(cube, TAU / 4, RIGHT, run_time=3))
self.wait(2)
self.play(Rotate(cube, TAU / 4, UP, run_time=3))
self.wait(2)
self.play(Rotate(cube, -TAU / 3, np.ones(3), run_time=3))
self.wait(7)
class HereWeTackle4d(TeacherStudentsScene):
def construct(self):
titles = VGroup(
TextMobject(
"This video:\\\\",
"Quaternions in 4d"
),
TextMobject(
"Next video:\\\\",
"Quaternions acting on 3d"
)
)
for title in titles:
title.move_to(self.hold_up_spot, DOWN)
titles[0].set_color(YELLOW)
self.play(
self.teacher.change, "raise_right_hand",
FadeInFromDown(titles[0]),
self.get_student_changes("confused", "horrified", "sad")
)
self.look_at(self.screen)
self.wait()
self.change_student_modes(
"erm", "thinking", "pondering",
look_at_arg=self.screen
)
self.wait(3)
self.change_student_modes(
"pondering", "confused", "happy"
)
self.look_at(self.screen)
self.wait(3)
self.play(
self.teacher.change, "hooray",
FadeInFrom(titles[1]),
ApplyMethod(
titles[0].shift, 2 * UP,
rate_func=squish_rate_func(smooth, 0.2, 1)
)
)
self.change_all_student_modes("hooray")
self.play(self.teacher.change, "happy")
self.look_at(self.screen)
self.wait(3)
class TableOfContents(Scene):
def construct(self):
chapters = VGroup(
TextMobject(
"\\underline{Chapter 1}\\\\", "Linus the Linelander"
),
TextMobject(
"\\underline{Chapter 2}\\\\", "Felix the Flatlander"
),
TextMobject(
"\\underline{Chapter 3}\\\\", " You, the 3d-lander"
),
)
for chapter in chapters:
chapter.space_out_submobjects(1.5)
chapters.arrange_submobjects(
DOWN, buff=1.5, aligned_edge=LEFT
)
chapters.to_edge(LEFT)
for chapter in chapters:
self.play(FadeInFromDown(chapter))
self.wait(2)
for chapter in chapters:
chapters.save_state()
other_chapters = VGroup(*[
c for c in chapters if c is not chapter
])
self.play(
chapter.set_width, 0.5 * FRAME_WIDTH,
chapter.center,
other_chapters.fade, 1
)
self.wait(3)
self.play(chapters.restore)
class IntroduceLinusTheLinelander(Scene):
def construct(self):
self.introduce_linus()
self.show_real_number_line()
self.look_at_complex_plane()
def introduce_linus(self):
linus = Linus()
linus.move_to(3 * LEFT)
name = TextMobject("Linus the Linelander")
name.next_to(linus, DR, buff=MED_LARGE_BUFF)
arrow = Arrow(name.get_top(), linus.get_right())
self.play(FadeInFromDown(linus))
self.play(
Write(name),
GrowArrow(arrow),
linus.change, "gracious", name,
)
self.play(
linus.become_squiggle, {"factor": -0.1},
)
self.play(Blink(linus))
self.wait()
self.name_text = name
self.name_arrow = arrow
self.linus = linus
def show_real_number_line(self):
linus = self.linus
number_line = NumberLine()
number_line.add_numbers()
number_line.to_edge(UP)
algebra = VGroup(
TexMobject("3 \\cdot 4 = 12"),
TexMobject("3 + 4 = 7"),
TexMobject("(-2) \\cdot 3 = -6"),
)
algebra.arrange_submobjects(DOWN)
algebra.next_to(number_line, DOWN, LARGE_BUFF)
algebra.shift(3 * RIGHT)
self.play(
ShowCreation(number_line.main_line),
linus.look_at, number_line
)
self.play(
LaggedStart(FadeInFromDown, number_line.numbers),
LaggedStart(ShowCreation, number_line.tick_marks),
linus.change, "happy"
)
self.play(
LaggedStart(FadeInFromDown, algebra),
linus.look_at, algebra
)
self.play(Blink(linus))
self.wait()
self.algebra = algebra
def look_at_complex_plane(self):
linus = self.linus
to_fade = VGroup(
self.name_text,
self.name_arrow,
self.algebra,
)
frame = ScreenRectangle()
frame.set_width(8)
frame.to_corner(DR)
q_marks = VGroup(*[
TexMobject("?").shift(
random.random() * RIGHT,
random.random() * UP,
)
for x in range(50)
])
q_marks.next_to(linus.body, UP, buff=0)
q_marks.set_color_by_gradient(BLUE, GREEN, YELLOW)
random.shuffle(q_marks.submobjects)
q_marks_anim = LaggedStart(
FadeIn, q_marks,
run_time=15,
rate_func=there_and_back,
lag_ratio=0.1
)
q_marks_continual = NormalAnimationAsContinualAnimation(q_marks_anim)
self.play(
FadeOut(to_fade),
ShowCreation(frame),
linus.look_at, frame
)
self.add(q_marks_continual)
self.play(linus.change_mode, "confused")
self.wait()
self.play(Blink(linus))
self.play(linus.change, "confused", frame.get_bottom())
self.wait()
self.play(linus.change, "sad", frame.get_center())
self.wait(10)
class ShowComplexMultiplicationExamples(Scene):
CONFIG = {
"plane_config": {
"x_radius": 9,
"y_radius": 9,
"stroke_width": 3,
},
"background_plane_config": {
"color": LIGHT_GREY,
"secondary_color": DARK_GREY,
"stroke_width": 0.5,
"stroke_opacity": 0.5,
"secondary_line_ratio": 0,
}
}
def construct(self):
self.add_planes()
z_tuples = [
(complex(2, 1), "2 + i", UP),
(complex(5, 2), "5 + 2i", LEFT),
(
complex(-np.sqrt(2) / 2, np.sqrt(2) / 2),
"-\\frac{\\sqrt{2}}{2} + \\frac{\\sqrt{2}}{2} i",
LEFT,
),
(complex(-4, 1.5), "-4 + 1.5i", RIGHT),
(complex(3, 0), "3 + 0i", UP),
(complex(4, -3), "4 + -3i", UP),
]
for z, z_tex, label_vect in z_tuples:
self.show_multiplication(z, z_tex, label_vect)
def add_planes(self, include_title=True):
plane = ComplexPlane(**self.plane_config)
self.plane = plane
background_plane = ComplexPlane(**self.background_plane_config)
background_plane.add_coordinates()
self.background_plane = background_plane
self.add(background_plane)
self.add(plane)
if include_title:
title = TextMobject("Complex plane")
title.scale(1.5)
title.to_corner(UL, buff=MED_LARGE_BUFF)
title.shift(SMALL_BUFF * UR)
self.title = title
self.add_foreground_mobjects(title)
def show_multiplication(self, z, z_tex, label_vect):
z_color = WHITE
plane = self.plane
new_plane = plane.deepcopy()
real_tex, imag_tex = z_tex.split("+")
label = TexMobject(
"\\text{Multiply by}\\\\",
real_tex, "+", imag_tex,
alignment="",
)
label[1].set_color(GREEN)
label[3].set_color(RED)
label.scale(1.2)
h_line = Line(
plane.number_to_point(0),
plane.number_to_point(z.real),
color=GREEN,
stroke_width=5,
)
v_line = Line(
plane.number_to_point(z.real),
plane.number_to_point(z),
color=RED,
stroke_width=5,
)
lines = VGroup(h_line, v_line)
z_point = plane.number_to_point(z)
z_dot = Dot(z_point)
z_dot.set_color(z_color)
label[1:].next_to(z_dot, label_vect)
label[0].next_to(label[1:], UP)
for mob in label:
label.add_to_back(BackgroundRectangle(mob))
one_dot = Dot(plane.number_to_point(1))
one_dot.set_color(YELLOW)
for dot in z_dot, one_dot:
dot.save_state()
dot.scale(5)
dot.set_fill(opacity=0)
dot.set_stroke(width=1, opacity=0.5)
to_fade_out = VGroup(
plane, label, lines, z_dot, one_dot
)
self.play(
ShowCreation(lines),
FadeInFromDown(label),
Restore(z_dot),
)
self.play(Restore(one_dot))
angle = np.log(z).imag
self.play(
one_dot.move_to, z_dot,
plane.apply_complex_function, lambda w: z * w,
path_arc=angle,
run_time=3
)
self.wait()
self.play(
FadeOut(to_fade_out),
FadeIn(new_plane),
)
self.plane = new_plane
class DefineComplexNumbersPurelyAlgebraically(Scene):
def construct(self):
self.add_linus()
self.add_title()
self.show_example_number()
self.show_multiplication()
self.emphsize_result_has_same_form()
def add_linus(self):
linus = self.linus = Linus()
linus.move_to(3 * LEFT)
def add_title(self):
title = self.title = Title(
"No spatial reasoning, just symbols"
)
self.play(
FadeInFromDown(title[:-1]),
ShowCreation(title[-1]),
self.linus.look_at, title
)
def show_example_number(self):
linus = self.linus
number = TexMobject("2.35", "+", "3.14", "i")
number.next_to(self.title, DOWN, buff=1.5)
number.shift(3 * RIGHT)
real, imag = number[0], number[2]
real_brace = Brace(real, UP)
imag_brace = Brace(imag, DOWN)
real_label = real_brace.get_text("Some real number")
imag_label = imag_brace.get_text("Some other real number")
VGroup(real, real_label).set_color(GREEN)
VGroup(imag, imag_label).set_color(RED)
i = number[-1]
i_def = TexMobject("i", "^2", "=", "-1")
i_def.next_to(
self.title, DOWN,
buff=MED_LARGE_BUFF,
aligned_edge=LEFT,
)
i_def_rect = SurroundingRectangle(i_def, color=YELLOW, buff=MED_SMALL_BUFF)
definition_label = TextMobject("Definition")
definition_label.next_to(i_def_rect, DOWN)
definition_label.match_color(i_def_rect)
self.play(Write(number, run_time=1))
self.play(
GrowFromCenter(real_brace),
LaggedStart(FadeIn, real_label),
linus.change, "confused", number,
run_time=1
)
self.wait()
self.play(
GrowFromCenter(imag_brace),
LaggedStart(FadeIn, imag_label),
run_time=1
)
self.play(Blink(linus))
self.play(
linus.change, "erm", i_def,
ReplacementTransform(
i.copy(), i_def[0],
path_arc=-30 * DEGREES
),
FadeIn(i_def_rect),
FadeIn(definition_label),
)
self.play(Write(i_def[1:]))
self.wait()
self.play(Blink(linus))
self.to_fade = VGroup(
real_brace, real_label,
imag_brace, imag_label,
)
self.number = number
def show_multiplication(self):
linus = self.linus
to_fade = self.to_fade
z1 = self.number
z2 = TexMobject("4", "+", "5", "i")
z2.match_style(z1)
for z in z1, z2:
lp, rp = z.parens = TexMobject("()")
lp.next_to(z, LEFT, SMALL_BUFF)
rp.next_to(z, RIGHT, SMALL_BUFF)
z.real = z[0]
z.imag = z[2:]
for part in z.real, z.imag:
part.targets = [part.copy(), part.copy()]
z1.generate_target()
product = VGroup(
VGroup(z1.target, z1.parens),
VGroup(z2, z2.parens),
)
product.arrange_submobjects(RIGHT, SMALL_BUFF)
product.move_to(2 * RIGHT + 2 * UP)
foil = VGroup(*map(TextMobject, [
"First", "Outside", "Inside", "Last",
]))
foil.arrange_submobjects(
DOWN, buff=MED_SMALL_BUFF,
aligned_edge=LEFT
)
foil.scale(1.25)
for word in foil:
word[0].set_color(BLUE)
foil.move_to(product).to_edge(DOWN, LARGE_BUFF)
def get_cdot():
return TexMobject("\\cdot")
def get_lp():
return TexMobject("(")
def get_rp():
return TexMobject(")")
def get_plus():
return TexMobject("+")
expansion = VGroup(
z1.real.targets[0], get_cdot(), z2.real.targets[0], get_plus(),
z1.real.targets[1], get_cdot(), z2.imag.targets[0], get_plus(),
z1.imag.targets[0], get_cdot(), z2.real.targets[1], get_plus(),
z1.imag.targets[1], get_cdot(), z2.imag.targets[1],
)
expansion.arrange_submobjects(RIGHT, buff=0.15)
expansion.next_to(product, DOWN, buff=LARGE_BUFF)
expansion_parts = VGroup(*[
expansion[4 * i: 4 * i + 3]
for i in range(4)
])
expansion_part_braces = VGroup(*[
Brace(part, DOWN) for part in expansion_parts
])
for word, brace in zip(foil, expansion_part_braces):
word.next_to(brace, DOWN)
final_prouct = VGroup(
get_lp(),
z1[0].copy(), get_cdot(), z2[0].copy(),
TexMobject("-"),
z1[2].copy(), get_cdot(), z2[2].copy(),
get_rp(), get_plus(),
get_lp(),
z1[0].copy(), get_cdot(), z2[2].copy(),
get_plus(),
z1[2].copy(), get_cdot(), z2[0].copy(),
get_rp(), TexMobject("i")
)
final_prouct.arrange_submobjects(RIGHT, buff=0.15)
final_prouct.next_to(expansion, DOWN, buff=2)
final_arrows = VGroup()
for i, brace in zip([1, 11, 15, 5], expansion_part_braces):
target = final_prouct[i:i + 3]
if i == 5:
arrow = Line(
brace.get_bottom() + SMALL_BUFF * DOWN,
target.get_top() + MED_SMALL_BUFF * UP,
)
arrow.points[1] = arrow.points[0] + DOWN
arrow.points[2] = arrow.points[3] + UP
tip = RegularPolygon(3, start_angle=-100 * DEGREES)
tip.set_height(0.2)
tip.set_stroke(width=0)
tip.set_fill(WHITE, opacity=1)
tip.move_to(arrow.get_end())
arrow.add(tip)
else:
arrow = Arrow(
brace.get_bottom(),
target.get_top(),
use_rectangular_stem=False,
)
final_arrows.add(arrow)
final_arrows.set_stroke(BLACK, width=6, background=True)
# Move example number into product
self.play(
FadeOut(to_fade),
MoveToTarget(z1),
FadeIn(z1.parens),
FadeInFromDown(z2),
FadeIn(z2.parens),
linus.change, "happy", product,
)
self.wait()
# Show distribution
pairs = list(it.product([z1.real, z1.imag], [z2.real, z2.imag]))
for i in range(4):
left, right = pair = VGroup(*pairs[i])
word = foil[i]
dot = expansion[4 * i + 1]
plus = expansion[4 * i + 3] if i < 3 else VMobject()
brace = expansion_part_braces[i]
self.play(pair.shift, 0.5 * DOWN)
self.play(
FadeIn(dot),
GrowFromCenter(brace),
FadeInFromDown(word),
linus.move_to, 4 * LEFT + DOWN,
*[
ReplacementTransform(
part.copy(),
part.targets.pop(0)
)
for part in pair
]
)
self.play(
pair.shift, 0.5 * UP,
FadeIn(plus)
)
self.play(Blink(linus))
self.play(
FadeOut(foil),
FadeInFromDown(final_prouct),
linus.look_at, final_prouct,
)
self.play(
LaggedStart(ShowCreation, final_arrows),
run_time=3,
)
self.play(linus.change, "confused")
self.wait()
self.final_prouct = final_prouct
def emphsize_result_has_same_form(self):
final_product = self.final_prouct
real = final_product[1:1 + 7]
imag = final_product[11:11 + 7]
real_brace = Brace(real, DOWN)
real_label = real_brace.get_text("Some real number")
real_label.set_color(GREEN)
imag_brace = Brace(imag, DOWN)
imag_label = imag_brace.get_text(
"Some other \\\\ real number"
)
imag_label.set_color(RED)
braces = VGroup(real_brace, imag_brace)
labels = VGroup(real_label, imag_label)
self.play(
LaggedStart(GrowFromCenter, braces),
LaggedStart(Write, labels),
)
self.wait()
class TextbookQuaternionDefinition(TeacherStudentsScene):
CONFIG = {
"random_seed": 1,
}
def construct(self):
equation = TexMobject(
"""
(w_1 + x_1 i + y_1 j + z_1 k)
(w_2 + x_2 i + y_2 j + z_2 k) =
&(w_1 w_2 - x_1 x_2 - y_1 y_2 - z_1 z_2) \\, +\\\\
&(w_1 x_2 + x_1 w_2 + y_1 z_2 - z_1 y_2)i \\, +\\\\
&(w_1 y_2 + y_1 w_2 + z_1 x_2 - x_1 z_2)j \\, +\\\\
&(w_1 z_2 + z_1 w_2 + x_1 y_2 - y_1 x_2)k \\\\
""",
tex_to_color_map={
"w_1": YELLOW,
"w_2": YELLOW,
"x_1": GREEN,
"x_2": GREEN,
"y_1": RED,
"y_2": RED,
"z_1": BLUE,
"z_2": BLUE,
}
)
equation.set_width(FRAME_WIDTH - 1)
equation.to_edge(UP)
defining_products = VGroup(*[
TexMobject(
tex,
tex_to_color_map={
"i": GREEN,
"j": RED,
"k": BLUE,
}
)
for tex in [
"i^2 = j^2 = k^2 = -1",
"ij = -ji = k",
"ki = -ik = j",
"jk = -kj = i",
]
])
defining_products.arrange_submobjects(DOWN)
defining_products.next_to(self.students, UP, LARGE_BUFF)
def_rect = SurroundingRectangle(defining_products)
self.play(
LaggedStart(FadeInFromDown, defining_products),
self.get_student_changes(*3 * ["confused"]),
self.teacher.change, "raise_right_hand",
)
self.play(ShowCreation(def_rect))
self.play(
Write(equation, run_time=4, lag_ratio=0.2),
self.get_student_changes(
"horrified", "pleading", "sick",
equation
),
self.teacher.change, "erm", equation,
)
self.blink()
self.look_at(equation.get_corner(UL))
self.blink()
self.look_at(equation.get_corner(UR))
self.wait(2)
class ProblemsWhereComplexNumbersArise(Scene):
def construct(self):
text = "Problems where complex numbers are surprisingly useful"
title = TextMobject(*text.split(" "))
title.to_edge(UP)
title.set_color(BLUE)
underline = Line(LEFT, RIGHT)
underline.set_width(title.get_width() + 0.5)
underline.next_to(title, DOWN)
problems = VGroup(
TextMobject(
"Integer solutions to\\\\ $a^2 + b^2 = c^2$",
alignment=""
),
TextMobject(
"Understanding\\\\",
"$1 - \\frac{1}{3} + \\frac{1}{5} - \\frac{1}{7} + \\cdots" +
"=\\frac{\\pi}{4}$",
alignment="",
),
TextMobject("Frequency analysis")
)
problems.arrange_submobjects(
DOWN, buff=LARGE_BUFF, aligned_edge=LEFT
)
for problem in problems:
problems.add(Dot().next_to(problem[0], LEFT))
problems.next_to(underline, DOWN, buff=MED_LARGE_BUFF)
problems.to_edge(LEFT)
v_dots = TexMobject("\\vdots")
v_dots.scale(2)
v_dots.next_to(problems, DOWN, aligned_edge=LEFT)
self.add(problems, v_dots)
self.play(
ShowCreation(underline),
LaggedStart(FadeInFromDown, title, lag_ratio=0.5),
run_time=3
)
self.wait()
class WalkThroughComplexMultiplication(ShowComplexMultiplicationExamples):
CONFIG = {
"z": complex(2, 3),
"w": complex(1, -1),
"z_color": YELLOW,
"w_color": PINK,
"product_color": RED,
}
def construct(self):
self.add_planes(include_title=False)
self.introduce_z_and_w()
self.show_action_on_all_complex_numbers()
def introduce_z_and_w(self):
# Tolerating code repetition here in case I want
# to specialize behavior for z or w...
plane = self.plane
origin = plane.number_to_point(0)
z_point = plane.number_to_point(self.z)
z_dot = Dot(z_point)
z_line = Line(origin, z_point)
z_label = VGroup(
TexMobject("z="),
DecimalNumber(self.z, num_decimal_places=0)
)
z_label.arrange_submobjects(
RIGHT, buff=SMALL_BUFF,
)
z_label.next_to(z_dot, UP, buff=SMALL_BUFF)
z_label.set_color(self.z_color)
z_label.add_background_rectangle()
VGroup(z_line, z_dot).set_color(self.z_color)
w_point = plane.number_to_point(self.w)
w_dot = Dot(w_point)
w_line = Line(origin, w_point)
w_label = VGroup(
TexMobject("w="),
DecimalNumber(self.w, num_decimal_places=0)
)
w_label.arrange_submobjects(RIGHT, buff=SMALL_BUFF)
w_label.next_to(w_dot, DOWN, buff=SMALL_BUFF)
w_label.set_color(self.w_color)
w_label.add_background_rectangle()
VGroup(w_line, w_dot).set_color(self.w_color)
VGroup(
z_label[1], w_label[1]
).shift(0.25 * SMALL_BUFF * DOWN)
product = TexMobject("z", "\\cdot", "w")
z_sym, w_sym = product[0], product[2]
z_sym.set_color(self.z_color)
w_sym.set_color(self.w_color)
product.scale(2)
product.to_corner(UL)
product.add_background_rectangle()
self.add(
z_line, z_label,
w_line, w_label,
)
self.play(LaggedStart(
FadeInFromLarge, VGroup(z_dot, w_dot),
lambda m: (m, 5),
lag_ratio=0.8,
run_time=1.5
))
self.play(
ReplacementTransform(z_label[1][0].copy(), z_sym)
)
self.add(product[:-1])
self.play(
ReplacementTransform(w_label[1][0].copy(), w_sym),
FadeInAndShiftFromDirection(product[2], LEFT),
FadeIn(product[0]),
)
self.wait()
self.set_variables_as_attrs(
product,
z_point, w_point,
z_dot, w_dot,
z_line, w_line,
)
def show_action_on_all_complex_numbers(self):
plane = self.plane
plane.save_state()
origin = plane.number_to_point(0)
z = self.z
angle = np.log(z).imag
product_tex = self.product[1:]
z_sym, cdot, w_sym = product_tex
product = self.z * self.w
product_point = plane.number_to_point(product)
product_dot = Dot(product_point)
product_line = Line(origin, product_point)
for mob in product_line, product_dot:
mob.set_color(self.product_color)
rect = SurroundingRectangle(VGroup(z_sym, cdot))
rect.set_fill(BLACK, opacity=1)
func_words = TextMobject("Function on the plane")
func_words.next_to(
rect, DOWN,
buff=MED_SMALL_BUFF,
aligned_edge=LEFT,
)
func_words.set_color(self.z_color)
sparkly_plane = VGroup()
for line in plane.family_members_with_points():
if self.camera.is_in_frame(line):
for piece in line.get_pieces(10):
p1, p2 = piece.get_pieces(2)
p1.rotate(PI)
pair = VGroup(p1, p2)
pair.scale(0.3)
sparkly_plane.add(pair)
sparkly_plane.sort_submobjects(
lambda p: 0.1 * get_norm(p) + random.random()
)
sparkly_plane.set_color_by_gradient(YELLOW, RED, PINK, BLUE)
sparkly_plane.set_stroke(width=4)
pin = PushPin()
pin.move_to(origin, DR)
one_dot = Dot(plane.number_to_point(1))
one_dot.set_fill(WHITE)
one_dot.set_stroke(BLACK, 1)
hand = Hand()
hand.move_to(plane.number_to_point(1), LEFT)
zero_eq = TexMobject("z \\cdot 0 = 0")
one_eq = TexMobject("z \\cdot 1 = z")
equations = VGroup(zero_eq, one_eq)
equations.arrange_submobjects(DOWN)
equations.scale(1.5)
for eq in equations:
eq.add_background_rectangle()
equations.next_to(func_words, DOWN)
equations.to_edge(LEFT)
product_label = VGroup(
TexMobject("z \\cdot w ="),
DecimalNumber(product, num_decimal_places=0)
)
product_label.arrange_submobjects(RIGHT)
product_label[0].shift(0.025 * DOWN)
product_label.next_to(product_dot, UP, SMALL_BUFF)
product_label.add_background_rectangle()
big_rect = Rectangle(
height=4,
width=6,
fill_color=BLACK,
fill_opacity=0.9,
stroke_width=0,
)
big_rect.to_corner(UL, buff=0)
self.add(big_rect, product_tex, rect, z_sym, cdot)
self.play(
FadeIn(big_rect),
ShowCreation(rect),
Write(func_words),
run_time=1
)
self.play(
ReplacementTransform(
self.w_line.copy(), product_line,
),
ReplacementTransform(
self.w_dot.copy(), product_dot,
),
path_arc=angle,
run_time=3
)
self.wait()
self.play(FadeOut(VGroup(product_line, product_dot)))
self.play(LaggedStart(
ShowCreationThenDestruction, sparkly_plane,
lag_ratio=0.5,
run_time=2
))
self.play(
plane.apply_complex_function, lambda w: z * w,
Transform(self.w_line, product_line),
Transform(self.w_dot, product_dot),
path_arc=angle,
run_time=9,
rate_func=lambda t: there_and_back_with_pause(t, 2 / 9)
)
self.wait()
self.play(FadeInFrom(pin, UL))
self.play(Write(zero_eq))
self.play(
FadeInFromLarge(one_dot),
FadeInFrom(hand, UR)
)
self.play(Write(one_eq))
self.wait()
self.play(
plane.apply_complex_function, lambda w: z * w,
ReplacementTransform(self.w_line.copy(), product_line),
ReplacementTransform(self.w_dot.copy(), product_dot),
one_dot.move_to, self.z_point,
hand.move_to, self.z_point, LEFT,
path_arc=angle,
run_time=4,
)
self.play(Write(product_label))
class ShowUnitCircleActions(ShowComplexMultiplicationExamples):
CONFIG = {
"random_seed": 0,
"plane_config": {
"secondary_line_ratio": 0,
}
}
def construct(self):
self.add_planes(include_title=False)
self.show_unit_circle_actions()
def show_unit_circle_actions(self):
plane = self.plane
origin = plane.number_to_point(0)
one_point = plane.number_to_point(1)
one_dot = Dot(one_point)
one_dot.set_fill(WHITE)
one_dot.set_stroke(BLACK, 1)
plane.add(one_dot)
pin = PushPin()
pin.move_to(origin, DR)
hand = Hand()
update_hand = UpdateFromFunc(
hand, lambda m: m.move_to(one_dot.get_center(), LEFT)
)
circle = Circle(
color=YELLOW,
radius=get_norm(one_point - origin)
)
self.add(circle)
self.add(pin, one_dot)
self.add_foreground_mobjects(hand)
title = TextMobject(
"Numbers on the unit circle",
"$\\rightarrow$", "pure rotation."
)
title.set_width(FRAME_WIDTH - 1)
title.to_edge(UP, buff=MED_SMALL_BUFF)
title.add_background_rectangle(buff=SMALL_BUFF)
self.add_foreground_mobjects(title)
self.background_plane.coordinate_labels.submobjects.pop(-1)
n_angles = 12
angles = list(np.linspace(-PI, PI, n_angles + 2)[1:-1])
random.shuffle(angles)
for angle in angles:
plane.save_state()
temp_plane = plane.copy()
z = np.exp(complex(0, angle))
if angle is angles[0]:
z_label = DecimalNumber(
z, num_decimal_places=2,
)
z_label.set_stroke(BLACK, width=11, background=True)
z_label_rect = BackgroundRectangle(z_label)
z_label_rect.set_fill(opacity=0)
z_point = plane.number_to_point(z)
z_arrow = Arrow(2.5 * z_point, z_point, buff=SMALL_BUFF)
z_dot = Dot(z_point)
z_label_start_center = z_label.get_center()
z_label.next_to(
z_arrow.get_start(),
np.sign(z_arrow.get_start()[1]) * UP,
)
z_label_end_center = z_label.get_center()
z_group = VGroup(z_arrow, z_dot, z_label)
z_group.set_color(GREEN)
z_group.add_to_back(z_label_rect)
z_arrow.set_stroke(BLACK, 1)
z_dot.set_stroke(BLACK, 1)
if angle is angles[0]:
self.play(
FadeInFromDown(z_label_rect),
FadeInFromDown(z_label),
GrowArrow(z_arrow),
FadeInFromLarge(z_dot),
)
else:
alpha_tracker = ValueTracker(0)
self.play(
ReplacementTransform(old_z_dot, z_dot),
ReplacementTransform(old_z_arrow, z_arrow),
UpdateFromFunc(
z_label_rect,
lambda m: m.replace(z_label)
),
ChangeDecimalToValue(
z_label, z,
position_update_func=lambda m: m.move_to(
interpolate(
z_label_start_center,
z_label_end_center,
alpha_tracker.get_value()
)
)
),
alpha_tracker.set_value, 1,
# hand.move_to, one_point, LEFT
)
old_z_dot = z_dot
old_z_arrow = z_arrow
VGroup(old_z_arrow, old_z_dot)
self.play(
Rotate(plane, angle, run_time=2),
update_hand,
Animation(z_group),
)
self.wait()
self.add(temp_plane, z_group)
self.play(
FadeOut(plane),
FadeOut(hand),
FadeIn(temp_plane),
)
plane.restore()
self.remove(temp_plane)
self.add(plane, *z_group)
class IfYouNeedAWarmUp(TeacherStudentsScene):
def construct(self):
screen = self.screen
screen.set_height(4)
screen.to_corner(UL)
self.add(screen)
self.teacher_says(
"If you need \\\\ a warm up",
bubble_kwargs={"width": 3.5, "height": 3},
)
self.change_all_student_modes(
"pondering", look_at_arg=screen,
)
self.wait(3)
self.play(RemovePiCreatureBubble(self.teacher))
self.wait(3)
class LinusThinksAboutStretching(Scene):
def construct(self):
linus = Linus()
top_line = NumberLine(color=GREY)
top_line.to_edge(UP)
top_line.add_numbers()
linus.move_to(3 * LEFT + DOWN)
self.add(linus, top_line)
scalars = [3, 0.5, 2]
for scalar in scalars:
lower_line = NumberLine(
x_min=-14,
x_max=14,
color=BLUE
)
lower_line.next_to(top_line, DOWN, MED_LARGE_BUFF)
lower_line.numbers = lower_line.get_number_mobjects()
for number in lower_line.numbers:
number.add_updater(lambda m: m.next_to(
lower_line.number_to_point(m.get_value()),
DOWN, MED_SMALL_BUFF,
))
lower_line.save_state()
lower_line.numbers.save_state()
self.add(lower_line, *lower_line.numbers)
words = TextMobject("Multiply by {}".format(scalar))
words.next_to(lower_line.numbers, DOWN)
self.play(
ApplyMethod(
lower_line.stretch, scalar, 0,
run_time=2
),
# LaggedStart(FadeIn, words, run_time=1),
FadeInFromLarge(words, 1.0 / scalar),
linus.look_at, top_line.number_to_point(scalar)
)
self.play(Blink(linus))
self.play(
FadeOut(lower_line),
FadeOut(lower_line.numbers),
FadeOut(words),
FadeIn(lower_line.saved_state, remover=True),
FadeIn(lower_line.numbers.saved_state, remover=True),
linus.look_at, top_line.number_to_point(0)
)
self.play(linus.change, "confused", DOWN + RIGHT)
self.wait(2)
self.play(Blink(linus))
self.wait(2)
class LinusReactions(Scene):
def construct(self):
linus = Linus()
for mode in "confused", "sad", "erm", "angry", "pleading":
self.play(linus.change, mode, 2 * RIGHT)
self.wait()
self.play(Blink(linus))
self.wait()
class OneDegreeOfFreedomForRotation(Scene):
def construct(self):
circle = CheckeredCircle(radius=2, stroke_width=10)
r_line = Line(circle.get_center(), circle.get_right())
moving_r_line = r_line.copy()
right_dot = Dot(color=WHITE)
right_dot.move_to(circle.get_right())
circle.add(moving_r_line, right_dot)
def get_angle():
return moving_r_line.get_angle() % TAU
angle_label = Integer(0, unit="^\\circ")
angle_label.scale(2)
angle_label.add_updater(
lambda m: m.set_value(get_angle() / DEGREES)
)
angle_label.add_updater(
lambda m: m.next_to(circle, UP, MED_LARGE_BUFF)
)
def get_arc():
return Arc(
angle=get_angle(),
radius=0.5,
color=LIGHT_GREY,
)
arc = get_arc()
arc.add_updater(lambda m: m.become(get_arc()))
self.add(circle, r_line, angle_label, arc)
angles = np.random.uniform(-TAU, TAU, 10)
for angle in angles:
self.play(Rotate(circle, angle, run_time=2))
class StereographicProjectionTitle(Scene):
def construct(self):
title = TextMobject("Stereographic projection")
final_title = title.copy()
final_title.set_width(10)
final_title.to_edge(UP)
title.rotate(-90 * DEGREES)
title.next_to(RIGHT, RIGHT, SMALL_BUFF)
title.apply_complex_function(np.exp)
title.rotate(90 * DEGREES)
title.set_height(6)
title.to_edge(UP)
self.play(Write(title))
self.play(Transform(title, final_title, run_time=2))
self.wait()
class IntroduceStereographicProjection(MovingCameraScene):
CONFIG = {
"n_sample_points": 16,
"circle_config": {
"n_pieces": 16,
"radius": 2,
"stroke_width": 7,
},
"example_angles": [
30 * DEGREES,
120 * DEGREES,
240 * DEGREES,
80 * DEGREES,
-60 * DEGREES,
135 * DEGREES,
]
}
def construct(self):
self.setup_plane()
self.draw_lines()
self.describe_individual_points()
self.remind_that_most_points_are_not_projected()
def setup_plane(self):
self.plane = self.get_plane()
self.circle = self.get_circle()
self.circle_shadow = self.get_circle_shadow()
self.add(self.plane)
self.add(self.circle_shadow)
self.add(self.circle)
def draw_lines(self):
plane = self.plane
circle = self.circle
circle.save_state()
circle.generate_target()
self.project_mobject(circle.target)
circle_points = self.get_sample_circle_points()
dots = VGroup(*[Dot(p) for p in circle_points])
dots.set_sheen(-0.2, DR)
dots.set_stroke(DARK_GREY, 2, background=True)
arrows = VGroup()
for dot in dots:
dot.scale(0.75)
dot.generate_target()
dot.target.move_to(
self.project(dot.get_center())
)
arrow = Arrow(
dot.get_center(),
dot.target.get_center(),
)
arrows.add(arrow)
neg_one_point = plane.number_to_point(-1)
neg_one_dot = Dot(neg_one_point)
neg_one_dot.set_fill(YELLOW)
lines = self.get_lines()
special_index = self.n_sample_points // 2 + 1
line = lines[special_index]
dot = dots[special_index]
arrow = arrows[special_index]
dot_target_outline = dot.target.copy()
dot_target_outline.set_stroke(RED, 2)
dot_target_outline.set_fill(opacity=0)
dot_target_outline.scale(1.5)
v_line = Line(UP, DOWN)
v_line.set_height(FRAME_HEIGHT)
v_line.set_stroke(RED, 5)
self.play(LaggedStart(FadeInFromLarge, dots))
self.play(FadeInFromLarge(neg_one_dot))
self.add(lines, neg_one_dot, dots)
self.play(LaggedStart(ShowCreation, lines))
self.wait()
self.play(
lines.set_stroke, {"width": 0.5},
line.set_stroke, {"width": 4},
)
self.play(ShowCreation(dot_target_outline))
self.play(ShowCreationThenDestruction(v_line))
self.play(MoveToTarget(dot))
self.wait()
self.play(
lines.set_stroke, {"width": 1},
FadeOut(dot_target_outline),
MoveToTarget(circle),
*map(MoveToTarget, dots),
run_time=2,
)
self.wait()
self.lines = lines
self.dots = dots
def describe_individual_points(self):
plane = self.plane
one_point, zero_point, i_point, neg_i_point, neg_one_point = [
plane.number_to_point(n)
for n in [1, 0, complex(0, 1), complex(0, -1), -1]
]
i_pin = PushPin()
i_pin.pin_to(i_point)
neg_i_pin = PushPin()
neg_i_pin.pin_to(neg_i_point)
dot = Dot()
dot.set_stroke(RED, 3)
dot.set_fill(opacity=0)
dot.scale(1.5)
dot.move_to(one_point)
arc1 = Arc(angle=TAU / 4, radius=2)
arc2 = Arc(
angle=85 * DEGREES, radius=2,
start_angle=TAU / 4,
)
arc3 = Arc(
angle=-85 * DEGREES, radius=2,
start_angle=-TAU / 4,
)
VGroup(arc1, arc2, arc3).set_stroke(RED)
frame = self.camera_frame
frame_height_tracker = ValueTracker(frame.get_height())
frame_height_growth = ContinualGrowValue(
frame_height_tracker, rate=0.4
)
neg_one_tangent = VGroup(
Line(ORIGIN, UP),
Line(ORIGIN, DOWN),
)
neg_one_tangent.set_height(25)
neg_one_tangent.set_stroke(YELLOW, 5)
neg_one_tangent.move_to(neg_one_point)
self.play(ShowCreation(dot))
self.wait()
self.play(dot.move_to, zero_point)
self.wait()
dot.move_to(i_point)
self.play(ShowCreation(dot))
self.play(FadeInFrom(i_pin, UL))
self.wait()
self.play(
dot.move_to, neg_i_point,
path_arc=-60 * DEGREES
)
self.play(FadeInFrom(neg_i_pin, UL))
self.wait()
self.play(
dot.move_to, one_point,
path_arc=-60 * DEGREES
)
frame.add_updater(
lambda m: m.set_height(frame_height_tracker.get_value())
)
triplets = [
(arc1, i_point, TAU / 4),
(arc2, neg_one_point, TAU / 4),
(arc3, neg_one_point, -TAU / 4),
]
for arc, point, path_arc in triplets:
self.play(
ShowCreation(arc),
dot.move_to, point, path_arc=path_arc,
run_time=2
)
self.wait()
self.play(
ApplyFunction(self.project_mobject, arc, run_time=2)
)
self.wait()
self.play(FadeOut(arc))
self.wait()
if arc is arc1:
self.add(frame, frame_height_growth)
elif arc is arc2:
self.play(dot.move_to, neg_i_point)
frame_height_growth.begin_wind_down()
self.wait(2)
self.play(*map(ShowCreation, neg_one_tangent))
self.wait()
self.play(FadeOut(neg_one_tangent))
self.wait(2)
frame.clear_updaters()
self.play(
frame.set_height, FRAME_HEIGHT,
self.lines.set_stroke, {"width": 0.5},
FadeOut(self.dots),
FadeOut(dot),
run_time=2,
)
def remind_that_most_points_are_not_projected(self):
plane = self.plane
circle = self.circle
sample_values = [0, complex(1, 1), complex(-2, -1)]
sample_points = [
plane.number_to_point(value)
for value in sample_values
]
sample_dots = VGroup(*[Dot(p) for p in sample_points])
sample_dots.set_fill(GREEN)
self.play(
FadeOut(self.lines),
Restore(circle),
)
for value, dot in zip(sample_values, sample_dots):
cross = Cross(dot)
cross.scale(2)
label = Integer(value)
label.next_to(dot, UR, SMALL_BUFF)
self.play(
FadeInFromLarge(dot, 3),
FadeInFromDown(label)
)
self.play(ShowCreation(cross))
self.play(*map(FadeOut, [dot, cross, label]))
self.wait()
self.play(
FadeIn(self.lines),
MoveToTarget(circle, run_time=2),
)
self.wait()
# Helpers
def get_plane(self):
plane = ComplexPlane(
unit_size=2,
color=GREY,
secondary_color=DARK_GREY,
x_radius=FRAME_WIDTH,
y_radius=FRAME_HEIGHT,
stroke_width=2,
)
plane.add_coordinates()
return plane
def get_circle(self):
circle = CheckeredCircle(
**self.circle_config
)
circle.set_stroke(width=7)
return circle
def get_circle_shadow(self):
circle_shadow = CheckeredCircle(
**self.circle_config
)
circle_shadow.set_stroke(opacity=0.65)
return circle_shadow
def get_sample_circle_points(self):
plane = self.plane
n = self.n_sample_points
numbers = [
np.exp(complex(0, TAU * x / n))
for x in range(-(n // 2) + 1, n // 2)
]
return [
plane.number_to_point(number)
for number in numbers
]
def get_lines(self):
plane = self.plane
neg_one_point = plane.number_to_point(-1)
circle_points = self.get_sample_circle_points()
lines = VGroup(*[
Line(neg_one_point, point)
for point in circle_points
])
for line in lines:
line.scale(
20 / line.get_length(),
about_point=neg_one_point
)
line.set_stroke(YELLOW, 1)
return lines
def project(self, point):
return stereo_project_point(point, axis=0, r=2)
def project_mobject(self, mobject):
return stereo_project(mobject, axis=0, r=2, outer_r=6)
class IntroduceStereographicProjectionLinusView(IntroduceStereographicProjection):
def construct(self):
self.describe_individual_points()
self.point_at_infinity()
self.show_90_degree_rotation()
self.talk_through_90_degree_rotation()
self.show_four_rotations()
self.show_example_angles()
def describe_individual_points(self):
plane = self.plane = self.get_plane()
circle = self.circle = self.get_circle()
linus = self.linus = self.get_linus()
angles = np.arange(-135, 180, 45) * DEGREES
sample_numbers = [
np.exp(complex(0, angle))
for angle in angles
]
sample_points = [
plane.number_to_point(number)
for number in sample_numbers
]
projected_sample_points = [
self.project(point)
for point in sample_points
]
dots = VGroup(*[Dot() for x in range(8)])
dots.set_fill(WHITE)
dots.set_stroke(BLACK, 1)
def generate_dot_updater(circle_piece):
return lambda d: d.move_to(circle_piece.points[0])
for dot, piece in zip(dots, circle[::(len(circle) // 8)]):
dot.add_updater(generate_dot_updater(piece))
stot = "(\\sqrt{2} / 2)"
labels_tex = [
"-{}-{}i".format(stot, stot),
"-i",
"{}-{}i".format(stot, stot),
"1",
"{}+{}i".format(stot, stot),
"i",
"-{}+{}i".format(stot, stot),
]
labels = VGroup(*[TexMobject(tex) for tex in labels_tex])
vects = it.cycle([RIGHT, RIGHT])
arrows = VGroup()
for label, point, vect in zip(labels, projected_sample_points, vects):
arrow = Arrow(vect, ORIGIN)
arrow.next_to(point, vect, 2 * SMALL_BUFF)
arrows.add(arrow)
label.set_stroke(width=0, background=True)
if stot in label.get_tex_string():
label.set_height(0.5)
else:
label.set_height(0.5)
label.set_stroke(WHITE, 2, background=True)
label.next_to(arrow, vect, SMALL_BUFF)
frame = self.camera_frame
frame.set_height(12)
self.add(linus)
self.add(circle, *dots)
self.play(
ApplyFunction(self.project_mobject, circle),
run_time=2
)
self.play(linus.change, "confused")
self.wait()
for i in [1, 0]:
self.play(
LaggedStart(GrowArrow, arrows[i::2]),
LaggedStart(Write, labels[i::2])
)
self.play(Blink(linus))
self.dots = dots
def point_at_infinity(self):
circle = self.circle
linus = self.linus
label = TextMobject(
"$-1$ is \\\\ at $\\pm \\infty$"
)
label.scale(1.5)
label.next_to(circle, LEFT, buff=1.25)
arrows = VGroup(*[
Vector(3 * v + 0.0 * RIGHT).next_to(label, v, buff=MED_LARGE_BUFF)
for v in [UP, DOWN]
])
arrows.set_color(YELLOW)
self.play(
Write(label),
linus.change, "awe", label,
*map(GrowArrow, arrows)
)
self.neg_one_label = VGroup(label, arrows)
def show_90_degree_rotation(self):
angle_tracker = ValueTracker(0)
circle = self.circle
linus = self.linus
hand = Hand()
hand.flip()
one_dot = self.dots[0]
hand.add_updater(
lambda h: h.move_to(one_dot.get_center(), RIGHT)
)
def update_circle(circle):
angle = angle_tracker.get_value()
new_circle = self.get_circle()
new_circle.rotate(angle)
self.project_mobject(new_circle)
circle.become(new_circle)
circle.add_updater(update_circle)
self.play(
FadeIn(hand),
one_dot.set_fill, RED,
)
for angle in 90 * DEGREES, 0:
self.play(
ApplyMethod(
angle_tracker.set_value, angle,
run_time=3,
),
linus.change, "confused", hand
)
self.wait()
self.play(Blink(linus))
self.hand = hand
self.angle_tracker = angle_tracker
def talk_through_90_degree_rotation(self):
linus = self.linus
dots = self.dots
one_dot = dots[0]
i_dot = dots[2]
neg_i_dot = dots[-2]
kwargs1 = {
"use_rectangular_stem": False,
"path_arc": -90 * DEGREES,
"buff": SMALL_BUFF,
}
kwargs2 = dict(kwargs1)
kwargs2["path_arc"] = -40 * DEGREES
arrows = VGroup(
Arrow(one_dot, i_dot, **kwargs1),
Arrow(i_dot, 6 * UP + LEFT, **kwargs2),
Arrow(6 * DOWN + LEFT, neg_i_dot, **kwargs2),
Arrow(neg_i_dot, one_dot, **kwargs1)
)
arrows.set_stroke(WHITE, 3)
one_to_i, i_to_neg_1, neg_one_to_neg_i, neg_i_to_one = arrows
for arrow in arrows:
self.play(
ShowCreation(arrow),
linus.look_at, arrow
)
self.wait(2)
self.arrows = arrows
def show_four_rotations(self):
angle_tracker = self.angle_tracker
linus = self.linus
hand = self.hand
linus.add_updater(lambda l: l.look_at(hand))
linus.add_updater(lambda l: l.eyes.next_to(l.body, UP, 0))
for angle in np.arange(TAU / 4, 5 * TAU / 4, TAU / 4):
self.play(
ApplyMethod(
angle_tracker.set_value, angle,
run_time=3,
),
)
self.wait()
self.play(FadeOut(self.arrows))
def show_example_angles(self):
angle_tracker = self.angle_tracker
angle_tracker.set_value(0)
for angle in self.example_angles:
self.play(
ApplyMethod(
angle_tracker.set_value, angle,
run_time=4,
),
)
self.wait()
#
def get_linus(self):
linus = Linus()
linus.move_to(3 * RIGHT)
linus.to_edge(DOWN)
linus.look_at(ORIGIN)
return linus
class ShowRotationUnderStereographicProjection(IntroduceStereographicProjection):
def construct(self):
self.setup_plane()
self.apply_projection()
self.show_90_degree_rotation()
self.talk_through_90_degree_rotation()
self.show_four_rotations()
self.show_example_angles()
def apply_projection(self):
plane = self.plane
circle = self.circle
neg_one_point = plane.number_to_point(-1)
neg_one_dot = Dot(neg_one_point)
neg_one_dot.set_fill(YELLOW)
lines = self.get_lines()
def generate_dot_updater(circle_piece):
return lambda d: d.move_to(circle_piece.points[0])
for circ, color in [(self.circle_shadow, RED), (self.circle, WHITE)]:
for piece in circ[::(len(circ) // 8)]:
dot = Dot(color=color)
dot.set_fill(opacity=circ.get_stroke_opacity())
dot.add_updater(generate_dot_updater(piece))
self.add(dot)
self.add(lines, neg_one_dot)
self.play(*map(ShowCreation, lines))
self.play(
ApplyFunction(self.project_mobject, circle),
lines.set_stroke, {"width": 0.5},
run_time=2
)
self.play(
self.camera_frame.set_height, 12,
run_time=2
)
self.wait()
def show_90_degree_rotation(self):
circle = self.circle
circle_shadow = self.circle_shadow
def get_rotated_one_point():
return circle_shadow[0].points[0]
def get_angle():
return angle_of_vector(get_rotated_one_point())
self.get_angle = get_angle
one_dot = Dot(color=RED)
one_dot.add_updater(
lambda m: m.move_to(get_rotated_one_point())
)
hand = Hand()
hand.move_to(one_dot.get_center(), LEFT)
def update_circle(circle):
new_circle = self.get_circle()
new_circle.rotate(get_angle())
self.project_mobject(new_circle)
circle.become(new_circle)
circle.add_updater(update_circle)
self.add(one_dot, hand)
hand.add_updater(
lambda h: h.move_to(one_dot.get_center(), LEFT)
)
self.play(
FadeInFrom(hand, RIGHT),
FadeInFromLarge(one_dot, 3),
)
for angle in 90 * DEGREES, -90 * DEGREES:
self.play(
Rotate(circle_shadow, angle, run_time=3),
)
self.wait(2)
def talk_through_90_degree_rotation(self):
plane = self.plane
points = [
plane.number_to_point(z)
for z in [1, complex(0, 1), -1, complex(0, -1)]
]
arrows = VGroup()
for p1, p2 in adjacent_pairs(points):
arrow = Arrow(
p1, p2, path_arc=180 * DEGREES,
use_rectangular_stem=False,
)
arrow.set_stroke(LIGHT_GREY, width=3)
arrow.tip.set_fill(LIGHT_GREY)
arrows.add(arrow)
for arrow in arrows:
self.play(ShowCreation(arrow))
self.wait(2)
self.arrows = arrows
def show_four_rotations(self):
circle_shadow = self.circle_shadow
for x in range(4):
self.play(
Rotate(circle_shadow, TAU / 4, run_time=3)
)
self.wait()
self.play(FadeOut(self.arrows))
def show_example_angles(self):
circle_shadow = self.circle_shadow
angle_label = Integer(0, unit="^\\circ")
angle_label.scale(1.5)
angle_label.next_to(
circle_shadow.get_top(), UR,
)
self.play(FadeInFromDown(angle_label))
self.add(angle_label)
for angle in self.example_angles:
d_angle = angle - self.get_angle()
self.play(
Rotate(circle_shadow, d_angle),
ChangingDecimal(
angle_label,
lambda a: (self.get_angle() % TAU) / DEGREES
),
run_time=4
)
self.wait()
class IntroduceFelix(PiCreatureScene, SpecialThreeDScene):
def setup(self):
PiCreatureScene.setup(self)
SpecialThreeDScene.setup(self)
def construct(self):
self.introduce_felix()
self.add_plane()
self.show_in_three_d()
def introduce_felix(self):
felix = self.felix = self.pi_creature
arrow = Vector(DL, color=WHITE)
arrow.next_to(felix, UR)
label = TextMobject("Felix the Flatlander")
label.next_to(arrow.get_start(), UP)
self.add(felix)
self.play(
felix.change, "wave_1", label,
Write(label),
GrowArrow(arrow),
)
self.play(Blink(felix))
self.play(felix.change, "thinking", label)
self.to_fade = VGroup(label, arrow)
def add_plane(self):
plane = NumberPlane(y_radius=10)
axes = self.get_axes()
to_fade = self.to_fade
felix = self.felix
self.add(axes, plane, felix)
self.play(
ShowCreation(axes),
ShowCreation(plane),
FadeOut(to_fade),
)
self.wait()
self.plane = plane
self.axes = axes
def show_in_three_d(self):
felix = self.pi_creature
plane = self.plane
axes = self.axes
# back_plane = Rectangle().replace(plane, stretch=True)
# back_plane.shade_in_3d = True
# back_plane.set_fill(LIGHT_GREY, opacity=0.5)
# back_plane.set_sheen(1, UL)
# back_plane.shift(SMALL_BUFF * IN)
# back_plane.set_stroke(width=0)
# back_plane = ParametricSurface(
# lambda u, v: u * RIGHT + v * UP
# )
# back_plane.replace(plane, stretch=True)
# back_plane.set_stroke(width=0)
# back_plane.set_fill(LIGHT_GREY, opacity=0.5)
sphere = self.get_sphere()
# sphere.set_fill(BLUE_E, 0.5)
self.move_camera(
phi=70 * DEGREES,
theta=-110 * DEGREES,
added_anims=[FadeOut(plane)],
run_time=2
)
self.begin_ambient_camera_rotation()
self.add(axes, sphere)
self.play(
Write(sphere),
felix.change, "confused"
)
self.wait()
axis_angle_pairs = [
(RIGHT, 90 * DEGREES),
(OUT, 45 * DEGREES),
(UR + OUT, 120 * DEGREES),
(RIGHT, 90 * DEGREES),
]
for axis, angle in axis_angle_pairs:
self.play(Rotate(
sphere, angle=angle, axis=axis,
run_time=2,
))
self.wait(2)
#
def create_pi_creature(self):
return Felix().move_to(4 * LEFT + 2 * DOWN)
class IntroduceThreeDNumbers(SpecialThreeDScene):
CONFIG = {
"camera_config": {
"exponential_projection": False,
}
}
def construct(self):
self.add_third_axis()
self.reorient_axes()
self.show_example_number()
def add_third_axis(self):
plane = ComplexPlane(
y_radius=FRAME_WIDTH / 4,
unit_size=2,
secondary_line_ratio=1,
)
plane.add_coordinates()
title = TextMobject("Complex Plane")
title.scale(1.8)
title.add_background_rectangle()
title.to_corner(UL, buff=MED_SMALL_BUFF)
real_line = Line(LEFT, RIGHT).set_width(FRAME_WIDTH)
imag_line = Line(DOWN, UP).set_height(FRAME_HEIGHT)
real_line.set_color(YELLOW)
imag_line.set_color(RED)
for label in plane.coordinate_labels:
label.remove(label.background_rectangle)
label.shift(SMALL_BUFF * IN)
self.add_fixed_orientation_mobjects(label)
reals = plane.coordinate_labels[:7]
imags = plane.coordinate_labels[7:]
self.add(plane, title)
for line, group in (real_line, reals), (imag_line, imags):
line.set_stroke(width=5)
self.play(
ShowCreationThenDestruction(line),
LaggedStart(
Indicate, group,
rate_func=there_and_back,
color=line.get_color(),
),
run_time=2,
)
self.plane = plane
self.title = title
def reorient_axes(self):
z_axis = NumberLine(unit_size=2)
z_axis.rotate(90 * DEGREES, axis=DOWN)
z_axis.rotate(90 * DEGREES, axis=OUT)
z_axis.set_color(WHITE)
z_axis_top = Line(
z_axis.number_to_point(0),
z_axis.main_line.get_end(),
)
z_axis_top.match_style(z_axis.main_line)
z_unit_line = Line(
z_axis.number_to_point(0),
z_axis.number_to_point(1),
color=RED,
stroke_width=5
)
j_labels = VGroup(
TexMobject("-2j"),
TexMobject("-j"),
TexMobject("j"),
TexMobject("2j"),
)
for label, num in zip(j_labels, [-2, -1, 1, 2]):
label.next_to(z_axis.number_to_point(num), RIGHT, MED_SMALL_BUFF)
self.add_fixed_orientation_mobjects(label)
plane = self.plane
x_line = Line(LEFT, RIGHT).set_width(FRAME_WIDTH)
y_line = Line(DOWN, UP).set_height(FRAME_WIDTH)
z_line = Line(IN, OUT).set_depth(FRAME_WIDTH)
x_line.set_stroke(GREEN, 5)
y_line.set_stroke(RED, 5)
z_line.set_stroke(YELLOW, 5)
coord_lines = VGroup(x_line, y_line, z_line)
self.add(z_axis, plane, z_axis_top)
self.move_camera(
phi=70 * DEGREES,
theta=-80 * DEGREES,
added_anims=[
plane.set_stroke, {"opacity": 0.5},
],
run_time=2,
)
self.begin_ambient_camera_rotation(rate=0.02)
self.wait()
self.play(FadeInFrom(j_labels, IN))
z_axis.add(j_labels)
self.play(
ShowCreationThenDestruction(z_unit_line),
run_time=2
)
self.wait(4)
group = VGroup(*it.chain(plane.coordinate_labels, j_labels))
for label in group:
label.generate_target()
axis = np.ones(3)
label.target.rotate_about_origin(-120 * DEGREES, axis=axis)
label.target.rotate(120 * DEGREES, axis=axis)
for y, label in zip([-2, -1, 1, 2], j_labels):
label.target.scale(0.65)
label.target.next_to(
2 * y * UP, RIGHT, 2 * SMALL_BUFF
)
self.play(
LaggedStart(MoveToTarget, group, lag_ratio=0.8),
FadeOut(self.title),
run_time=3
)
self.wait(3)
for line, wait in zip(coord_lines, [False, True, True]):
self.play(
ShowCreationThenDestruction(line),
run_time=2
)
if wait:
self.wait()
def show_example_number(self):
x, y, z = coords = 2 * np.array([1.5, -1, 1.25])
dot = Sphere(radius=0.05)
dot.set_fill(LIGHT_GREY)
dot.move_to(coords)
point_line = Line(ORIGIN, coords)
point_line.set_stroke(WHITE, 1)
z_line = Line(ORIGIN, z * OUT)
x_line = Line(z_line.get_end(), z_line.get_end() + x * RIGHT)
y_line = Line(x_line.get_end(), x_line.get_end() + y * UP)
x_line.set_stroke(GREEN, 5)
y_line.set_stroke(RED, 5)
z_line.set_stroke(YELLOW, 5)
lines = VGroup(z_line, x_line, y_line)
number_label = TexMobject(
str(z / 2), "+", str(x / 2), "i", "+", str(y / 2), "j",
tex_to_color_map={
str(z / 2): YELLOW,
str(x / 2): GREEN,
str(y / 2): RED,
}
)
number_label.next_to(ORIGIN, RIGHT, LARGE_BUFF)
number_label.to_edge(UP)
self.add_fixed_in_frame_mobjects(number_label)
self.play(
ShowCreation(point_line),
FadeInFrom(dot, -coords),
FadeInFromDown(number_label)
)
self.wait()
for num, line in zip([z, x, y], lines):
tex = number_label.get_part_by_tex(str(num / 2))
rect = SurroundingRectangle(tex)
rect.set_color(WHITE)
self.add_fixed_in_frame_mobjects(rect)
self.play(
ShowCreation(line),
ShowCreationThenDestruction(rect),
run_time=2
)
self.remove_fixed_in_frame_mobjects(rect)
self.wait()
self.wait(15)
class MentionImpossibilityOf3dNumbers(TeacherStudentsScene):
def construct(self):
equations = VGroup(
TexMobject("ij = ?"),
TexMobject("ji = ?"),
)
equations.arrange_submobjects(RIGHT, buff=LARGE_BUFF)
equations.scale(1.5)
equations.to_edge(UP)
self.add(equations)
why = TextMobject("Why not?")
why.next_to(self.students[1], UP)
self.teacher_says(
"Such 3d number \\\\ have no good \\\\ multiplication rule",
bubble_kwargs={"width": 4, "height": 3},
)
self.change_all_student_modes("confused")
self.wait(2)
self.play(
self.students[1].change, "maybe",
FadeInFromLarge(why),
)
self.wait(4)
class SphereExamplePointsDecimal(Scene):
CONFIG = {
"point_rotation_angle_axis_pairs": [
(45 * DEGREES, DOWN),
(120 * DEGREES, OUT),
(35 * DEGREES, rotate_vector(RIGHT, 30 * DEGREES)),
(90 * DEGREES, IN),
]
}
def construct(self):
decimals = VGroup(*[
DecimalNumber(
0,
num_decimal_places=3,
color=color,
include_sign=True,
edge_to_fix=RIGHT,
)
for color in [YELLOW, GREEN, RED]
])
number_label = VGroup(
decimals[0], TexMobject("+"),
decimals[1], TexMobject("i"), TexMobject("+"),
decimals[2], TexMobject("j"),
)
number_label.arrange_submobjects(RIGHT, buff=SMALL_BUFF)
number_label.to_corner(UL)
point = VectorizedPoint(OUT)
def generate_decimal_updater(decimal, index):
shifted_i = (index - 1) % 3
return ContinualChangingDecimal(
decimal,
lambda a: point.get_location()[shifted_i]
)
for i, decimal in enumerate(decimals):
self.add(generate_decimal_updater(decimal, i))
decimal_braces = VGroup()
for decimal, char in zip(decimals, "wxy"):
brace = Brace(decimal, DOWN, buff=SMALL_BUFF)
label = brace.get_tex(char, buff=SMALL_BUFF)
label.match_color(decimal)
brace.add(label)
decimal_braces.add(brace)
equation = TexMobject(
"w^2 + x^2 + y^2 = 1",
tex_to_color_map={
"w": YELLOW,
"x": GREEN,
"y": RED,
}
)
equation.next_to(decimal_braces, DOWN, MED_LARGE_BUFF)
self.add(number_label)
self.add(decimal_braces)
self.add(equation)
pairs = self.point_rotation_angle_axis_pairs
for angle, axis in pairs:
self.play(
Rotate(point, angle, axis=axis, about_point=ORIGIN),
run_time=2
)
self.wait()
class TwoDStereographicProjection(IntroduceFelix):
CONFIG = {
"camera_config": {
"exponential_projection": False,
},
"sphere_sample_point_u_range": np.arange(
0, PI, PI / 16,
),
"sphere_sample_point_v_range": np.arange(
0, TAU, TAU / 16,
),
"n_sample_rotation_cycles": 2,
}
def construct(self):
self.add_parts()
self.talk_through_sphere()
self.draw_projection_lines()
self.show_point_at_infinity()
self.show_a_few_rotations()
def add_parts(self, run_time=1):
felix = self.felix = self.pi_creature
felix.shift(1.5 * DL)
axes = self.axes = self.get_axes()
sphere = self.sphere = self.get_sphere()
c2p = axes.coords_to_point
labels = VGroup(
TexMobject("i").next_to(c2p(1, 0, 0), DR, SMALL_BUFF),
TexMobject("-i").next_to(c2p(-1, 0, 0), DL, SMALL_BUFF),
TexMobject("j").next_to(c2p(0, 1, 0), UL, SMALL_BUFF),
TexMobject("-j").next_to(c2p(0, -1, 0), DL, SMALL_BUFF),
TexMobject("1").rotate(
90 * DEGREES, RIGHT,
).next_to(c2p(0, 0, 1), RIGHT + OUT, SMALL_BUFF),
TexMobject("-1").rotate(
90 * DEGREES, RIGHT,
).next_to(c2p(0, 0, -1), RIGHT + IN, SMALL_BUFF),
)
for sm in labels[:4].family_members_with_points():
sm.add(VectorizedPoint(
0.25 * DOWN + 0.25 * OUT
))
labels.set_stroke(width=0, background=True)
for submob in labels.get_family():
submob.shade_in_3d = True
self.add(felix, axes, sphere, labels)
self.move_camera(
**self.get_default_camera_position(),
run_time=run_time
)
self.begin_ambient_camera_rotation(rate=0.01)
self.play(
felix.change, "pondering", sphere,
run_time=run_time,
)
def talk_through_sphere(self):
point = VectorizedPoint(OUT)
arrow = Vector(IN, shade_in_3d=True)
arrow.set_fill(PINK)
arrow.set_stroke(BLACK, 1)
def get_dot():
dot = Sphere(radius=0.05, u_max=PI / 2)
dot.set_fill(PINK)
dot.set_stroke(width=0)
dot.move_to(2.05 * OUT)
dot.apply_matrix(
z_to_vector(normalize(point.get_location())),
about_point=ORIGIN
)
return dot
dot = get_dot()
dot.add_updater(
lambda d: d.become(get_dot())
)
def update_arrow(arrow):
target_point = 2.1 * point.get_location()
rot_matrix = np.dot(
z_to_vector(normalize(target_point)),
np.linalg.inv(
z_to_vector(normalize(-arrow.get_vector()))
)
)
arrow.apply_matrix(rot_matrix)
arrow.shift(target_point - arrow.get_end())
return arrow
arrow.add_updater(update_arrow)
self.add(self.sphere, dot, arrow)
pairs = SphereExamplePointsDecimal.CONFIG.get(
"point_rotation_angle_axis_pairs"
)
for angle, axis in pairs:
self.play(
Rotate(point, angle, axis=axis, about_point=ORIGIN),
run_time=2
)
self.wait()
self.play(FadeOut(dot), FadeOut(arrow))
def draw_projection_lines(self):
sphere = self.sphere
axes = self.axes
radius = sphere.get_width() / 2
neg_one_point = axes.coords_to_point(0, 0, -1)
neg_one_dot = Dot(
neg_one_point,
color=YELLOW,
shade_in_3d=True
)
xy_plane = StereoProjectedSphere(
u_max=15 * PI / 16,
**self.sphere_config
)
xy_plane.set_fill(WHITE, 0.25)
xy_plane.set_stroke(width=0)
point_mob = VectorizedPoint(2 * OUT)
point_mob.add_updater(
lambda m: m.move_to(radius * normalize(m.get_center()))
)
point_mob.move_to([1, -1, 1])
point_mob.update(0)
def get_projection_line(sphere_point):
to_sphere = Line(neg_one_point, sphere_point)
to_plane = Line(
sphere_point,
self.project_point(sphere_point)
)
line = VGroup(to_sphere, to_plane)
line.set_stroke(YELLOW, 3)
for submob in line:
submob.shade_in_3d = True
return line
def get_sphere_dot(sphere_point):
dot = Dot(shade_in_3d=True)
dot.set_fill(PINK)
dot.insert_n_anchor_points(12) # Helps with flashing?
dot.apply_matrix(
z_to_vector(sphere_point),
about_point=ORIGIN,
)
dot.move_to(1.01 * sphere_point)
dot.add(VectorizedPoint(5 * sphere_point))
return dot
def get_projection_dot(sphere_point):
projection = self.project_point(sphere_point)
dot = Dot(projection, shade_in_3d=True)
dot.add(VectorizedPoint(dot.get_center() + 0.1 * OUT))
dot.set_fill(WHITE)
return dot
point = point_mob.get_location()
dot = get_sphere_dot(point)
line = get_projection_line(point)
projection_dot = get_projection_dot(point)
sample_points = [
radius * sphere.func(u, v)
for u in self.sphere_sample_point_u_range
for v in self.sphere_sample_point_v_range
]
lines = VGroup(*[get_projection_line(p) for p in sample_points])
lines.set_stroke(width=1)
north_lines = lines[:len(lines) // 2]
south_lines = lines[len(lines) // 2:]
self.add(xy_plane, sphere)
self.play(Write(xy_plane))
self.wait(2)
self.play(sphere.set_fill, BLUE_E, 0.5)
self.play(FadeInFromLarge(dot))
self.play(
FadeIn(neg_one_dot),
ShowCreation(line),
)
self.wait(2)
self.play(ReplacementTransform(
dot.copy(), projection_dot
))
def get_point():
return 2 * normalize(point_mob.get_location())
dot.add_updater(
lambda d: d.become(get_sphere_dot(get_point()))
)
line.add_updater(
lambda l: l.become(get_projection_line(get_point()))
)
projection_dot.add_updater(
lambda d: d.become(get_projection_dot(get_point()))
)
self.play(
point_mob.move_to,
radius * normalize(np.array([1, -1, -1])),
run_time=3
)
self.move_camera(
theta=-150 * DEGREES,
run_time=3
)
self.add(axes, sphere, xy_plane, dot, line)
for point in np.array([-2, 1, -0.5]), np.array([-0.01, -0.01, 1]):
self.play(
point_mob.move_to,
radius * normalize(point),
run_time=3
)
self.wait(2)
# Project norther hemisphere
north_hemisphere = self.get_sphere()
n = len(north_hemisphere)
north_hemisphere.remove(*north_hemisphere[n // 2:])
north_hemisphere.generate_target()
self.project_mobject(north_hemisphere.target)
north_hemisphere.set_fill(opacity=0.8)
self.play(
LaggedStart(ShowCreation, north_lines),
FadeIn(north_hemisphere)
)
self.play(
MoveToTarget(north_hemisphere),
run_time=3,
rate_func=lambda t: smooth(0.99 * t)
)
self.play(FadeOut(north_lines))
self.wait(2)
# Unit circle
circle = Sphere(
radius=2.01,
u_min=PI / 2 - 0.01,
u_max=PI / 2 + 0.01,
resolution=(1, 24),
)
for submob in circle:
submob.add(VectorizedPoint(1.5 * submob.get_center()))
circle.set_fill(YELLOW)
circle_path = Circle(radius=2)
circle_path.rotate(-90 * DEGREES)
self.play(FadeInFromLarge(circle))
self.play(point_mob.move_to, circle_path.points[0])
self.play(MoveAlongPath(point_mob, circle_path, run_time=6))
self.move_camera(
phi=0,
theta=-90 * DEGREES,
rate_func=there_and_back_with_pause,
run_time=6,
)
self.play(point_mob.move_to, OUT)
self.wait()
# Southern hemisphere
south_hemisphere = self.get_sphere()
n = len(south_hemisphere)
south_hemisphere.remove(*south_hemisphere[:n // 2])
south_hemisphere.remove(
*south_hemisphere[-sphere.resolution[1]:]
)
south_hemisphere.generate_target()
self.project_mobject(south_hemisphere.target)
south_hemisphere.set_fill(opacity=0.8)
south_hemisphere.target[-sphere.resolution[1] // 2:].set_fill(
opacity=0
)
self.play(
LaggedStart(ShowCreation, south_lines),
FadeIn(south_hemisphere)
)
self.play(
MoveToTarget(south_hemisphere),
FadeOut(south_lines),
FadeOut(xy_plane),
run_time=3,
rate_func=lambda t: smooth(0.99 * t)
)
self.wait(3)
self.projected_sphere = VGroup(
north_hemisphere,
south_hemisphere,
)
self.equator = circle
self.point_mob = point_mob
def show_point_at_infinity(self):
points = list(compass_directions(
12, start_vect=rotate_vector(RIGHT, 3.25 * DEGREES)
))
points.pop(7)
points.pop(2)
arrows = VGroup(*[
Arrow(6 * p, 11 * p)
for p in points
])
arrows.set_fill(RED)
arrows.set_stroke(RED, 10)
neg_ones = VGroup(*[
TexMobject("-1").next_to(arrow.get_start(), -p)
for p, arrow in zip(points, arrows)
])
neg_ones.set_stroke(width=0, background=True)
sphere_arcs = VGroup()
for angle in np.arange(0, TAU, TAU / 12):
arc = Arc(PI, radius=2)
arc.set_stroke(RED)
arc.rotate(PI / 2, axis=DOWN, about_point=ORIGIN)
arc.rotate(angle, axis=OUT, about_point=ORIGIN)
sphere_arcs.add(arc)
sphere_arcs.set_stroke(RED)
self.play(
LaggedStart(GrowArrow, arrows),
LaggedStart(Write, neg_ones)
)
self.wait(3)
self.play(
FadeOut(self.projected_sphere),
FadeOut(arrows),
FadeOut(neg_ones),
)
for x in range(2):
self.play(
ShowCreationThenDestruction(
sphere_arcs,
submobject_mode="all_at_once",
run_time=3,
)
)
def show_a_few_rotations(self):
sphere = self.sphere
felix = self.felix
point_mob = self.point_mob
point_mob.add_updater(
lambda m: m.move_to(sphere.get_all_points()[0])
)
coord_point_mobs = VGroup(
VectorizedPoint(RIGHT),
VectorizedPoint(UP),
VectorizedPoint(OUT),
)
for pm in coord_point_mobs:
pm.shade_in_3d = True
def get_rot_matrix():
return np.array([
pm.get_location()
for pm in coord_point_mobs
]).T
def get_projected_sphere():
result = StereoProjectedSphere(
get_rot_matrix(),
max_r=10,
**self.sphere_config,
)
result.set_fill(opacity=0.2)
result.fade_far_out_submobjects(32)
for submob in result:
if submob.get_center()[1] < -11:
submob.fade(1)
return result
projected_sphere = get_projected_sphere()
projected_sphere.add_updater(
lambda m: m.become(get_projected_sphere())
)
def get_projected_equator():
equator = CheckeredCircle(
n_pieces=24,
radius=2,
)
for submob in equator.get_family():
submob.shade_in_3d = True
equator.set_stroke(YELLOW, 5)
equator.apply_matrix(get_rot_matrix())
self.project_mobject(equator)
return equator
projected_equator = get_projected_equator()
projected_equator.add_updater(
lambda m: m.become(get_projected_equator())
)
self.add(sphere, projected_sphere)
self.move_camera(phi=60 * DEGREES)
self.play(
sphere.set_fill_by_checkerboard,
BLUE_E, BLUE_D, {"opacity": 0.8},
FadeIn(projected_sphere)
)
sphere.add(coord_point_mobs)
sphere.add(self.equator)
self.add(projected_equator)
pairs = self.get_sample_rotation_angle_axis_pairs()
for x in range(self.n_sample_rotation_cycles):
for angle, axis in pairs:
self.play(
Rotate(
sphere, angle=angle, axis=axis,
about_point=ORIGIN,
run_time=3,
),
felix.change, "confused",
)
self.wait()
self.projected_sphere = projected_sphere
#
def project_mobject(self, mobject):
return stereo_project(mobject, axis=2, r=2, outer_r=20)
def project_point(self, point):
return stereo_project_point(point, axis=2, r=2)
def get_sample_rotation_angle_axis_pairs(self):
return SphereExamplePointsDecimal.CONFIG.get(
"point_rotation_angle_axis_pairs"
)
class FelixViewOfProjection(TwoDStereographicProjection):
CONFIG = {}
def construct(self):
self.add_axes()
self.show_a_few_rotations()
def add_axes(self):
axes = Axes(
number_line_config={
"unit_size": 2,
"color": WHITE,
}
)
labels = VGroup(
TexMobject("i"),
TexMobject("-i"),
TexMobject("j"),
TexMobject("-j"),
)
coords = [(1, 0), (-1, 0), (0, 1), (0, -1)]
vects = [DOWN, DOWN, RIGHT, RIGHT]
for label, coords, vect in zip(labels, coords, vects):
point = axes.coords_to_point(*coords)
label.next_to(point, vect, buff=MED_SMALL_BUFF)
self.add(axes, labels)
self.pi_creature.change("confused")
def show_a_few_rotations(self):
felix = self.pi_creature
coord_point_mobs = VGroup([
VectorizedPoint(point)
for point in [RIGHT, UP, OUT]
])
def get_rot_matrix():
return np.array([
pm.get_location()
for pm in coord_point_mobs
]).T
def get_projected_sphere():
return StereoProjectedSphere(
get_rot_matrix(),
**self.sphere_config,
)
def get_projected_equator():
equator = Circle(radius=2, num_anchors=24)
equator.set_stroke(YELLOW, 5)
equator.apply_matrix(get_rot_matrix())
self.project_mobject(equator)
return equator
projected_sphere = get_projected_sphere()
projected_sphere.add_updater(
lambda m: m.become(get_projected_sphere())
)
equator = get_projected_equator()
equator.add_updater(
lambda m: m.become(get_projected_equator())
)
dot = Dot(color=PINK)
dot.add_updater(
lambda d: d.move_to(
self.project_point(
np.dot(2 * OUT, get_rot_matrix().T)
)
)
)
hand = Hand()
hand.add_updater(
lambda h: h.move_to(dot.get_center(), LEFT)
)
felix.add_updater(lambda f: f.look_at(dot))
self.add(projected_sphere)
self.add(equator)
self.add(dot)
self.add(hand)
pairs = self.get_sample_rotation_angle_axis_pairs()
for x in range(self.n_sample_rotation_cycles):
for angle, axis in pairs:
self.play(
Rotate(
coord_point_mobs, angle=angle, axis=axis,
about_point=ORIGIN,
run_time=3,
),
)
self.wait()
class ShowRotationsJustWithReferenceCircles(TwoDStereographicProjection):
def construct(self):
self.add_parts(run_time=1)
self.begin_ambient_camera_rotation(rate=0.03)
self.edit_parts()
self.show_1i_circle()
self.show_1j_circle()
self.show_random_circle()
self.show_rotations()
def edit_parts(self):
sphere = self.sphere
axes = self.axes
axes.set_stroke(width=1)
xy_plane = StereoProjectedSphere(u_max=15 * PI / 16)
xy_plane.set_fill(WHITE, 0.2)
xy_plane.set_stroke(width=0, opacity=0)
self.add(xy_plane, sphere)
self.play(
FadeIn(xy_plane),
sphere.set_fill, BLUE_E, {"opacity": 0.2},
sphere.set_stroke, {"width": 0.1, "opacity": 0.5}
)
def show_1i_circle(self):
axes = self.axes
circle = self.get_circle(GREEN_E, GREEN)
circle.rotate(TAU / 4, RIGHT)
circle.rotate(TAU / 4, DOWN)
projected = self.get_projected_circle(circle)
labels = VGroup(*map(TexMobject, ["0", "2i", "3i"]))
labels.set_shade_in_3d(True)
for label, x in zip(labels, [0, 2, 3]):
label.next_to(
axes.coords_to_point(x, 0, 0), DR, SMALL_BUFF
)
self.play(ShowCreation(circle, run_time=3))
self.wait()
self.play(ReplacementTransform(
circle.copy(), projected,
run_time=3
))
# self.axes.x_axis.pieces.set_stroke(width=0)
self.wait(7)
self.move_camera(
phi=60 * DEGREES,
)
self.play(
LaggedStart(
FadeInFrom, labels,
lambda m: (m, UP)
)
)
self.wait(2)
self.play(FadeOut(labels))
self.one_i_circle = circle
self.projected_one_i_circle = projected
def show_1j_circle(self):
circle = self.get_circle(RED_E, RED)
circle.rotate(TAU / 4, DOWN)
projected = self.get_projected_circle(circle)
self.move_camera(theta=-170 * DEGREES)
self.play(ShowCreation(circle, run_time=3))
self.wait()
self.play(ReplacementTransform(
circle.copy(), projected, run_time=3
))
# self.axes.y_axis.pieces.set_stroke(width=0)
self.wait(3)
self.one_j_circle = circle
self.projected_one_j_circle = projected
def show_random_circle(self):
sphere = self.sphere
circle = self.get_circle(BLUE_E, BLUE)
circle.set_width(2 * sphere.radius * np.sin(30 * DEGREES))
circle.shift(sphere.radius * np.cos(30 * DEGREES) * OUT)
circle.rotate(150 * DEGREES, UP, about_point=ORIGIN)
projected = self.get_projected_circle(circle)
self.play(ShowCreation(circle, run_time=2))
self.wait()
self.play(ReplacementTransform(
circle.copy(), projected,
run_time=2
))
self.wait(3)
self.play(
FadeOut(circle),
FadeOut(projected),
)
def show_rotations(self):
sphere = self.sphere
c1i = self.one_i_circle
pc1i = self.projected_one_i_circle
c1j = self.one_j_circle
pc1j = self.projected_one_j_circle
cij = self.get_circle(YELLOW_E, YELLOW)
pcij = self.get_projected_circle(cij)
circles = VGroup(c1i, c1j, cij)
x_axis = self.axes.x_axis
y_axis = self.axes.y_axis
arrow = Arrow(
2 * RIGHT, 2 * UP,
buff=SMALL_BUFF,
path_arc=PI,
use_rectangular_stem=False,
)
arrow.set_stroke(LIGHT_GREY, 3)
arrow.tip.set_fill(LIGHT_GREY)
arrows = VGroup(arrow, *[
arrow.copy().rotate(angle, about_point=ORIGIN)
for angle in np.arange(TAU / 4, TAU, TAU / 4)
])
arrows.rotate(TAU / 4, RIGHT, about_point=ORIGIN)
arrows.rotate(TAU / 2, OUT, about_point=ORIGIN)
arrows.rotate(TAU / 4, UP, about_point=ORIGIN)
arrows.space_out_submobjects(1.2)
self.play(FadeInFromLarge(cij))
sphere.add(circles)
pc1i.add_updater(
lambda c: c.become(self.get_projected_circle(c1i))
)
pc1j.add_updater(
lambda c: c.become(self.get_projected_circle(c1j))
)
pcij.add_updater(
lambda c: c.become(self.get_projected_circle(cij))
)
self.add(pcij)
# About j-axis
self.play(ShowCreation(arrows, run_time=3, rate_func=None))
self.wait(3)
for x in range(2):
y_axis.pieces.set_stroke(width=1)
self.play(
Rotate(sphere, 90 * DEGREES, axis=UP),
run_time=4,
)
y_axis.pieces.set_stroke(width=0)
self.wait(2)
# About i axis
self.move_camera(theta=-45 * DEGREES)
self.play(Rotate(arrows, TAU / 4, axis=OUT))
self.wait(2)
for x in range(2):
x_axis.pieces.set_stroke(width=1)
self.play(
Rotate(sphere, -90 * DEGREES, axis=RIGHT),
run_time=4,
)
x_axis.pieces.set_stroke(width=0)
self.wait(2)
self.wait(2)
# About real axis
self.move_camera(
theta=-135 * DEGREES,
added_anims=[FadeOut(arrows)]
)
self.ambient_camera_rotation.rate = 0.01
for x in range(2):
x_axis.pieces.set_stroke(width=1)
y_axis.pieces.set_stroke(width=1)
self.play(
Rotate(sphere, 90 * DEGREES, axis=OUT),
run_time=4,
)
# x_axis.pieces.set_stroke(width=0)
# y_axis.pieces.set_stroke(width=0)
self.wait(2)
#
def get_circle(self, *colors):
sphere = self.sphere
circle = CheckeredCircle(colors=colors, n_pieces=48)
circle.set_shade_in_3d(True)
circle.match_width(sphere)
return circle
def get_projected_circle(self, circle):
result = circle.deepcopy()
self.project_mobject(result)
result[::2].fade(1)
for sm in result:
if sm.get_width() > FRAME_WIDTH:
sm.fade(1)
if sm.get_height() > FRAME_HEIGHT:
sm.fade(1)
return result
class IntroduceQuaternions(Scene):
def construct(self):
self.compare_three_number_systems()
self.mention_four_perpendicular_axes()
self.bring_back_complex()
self.show_components_of_quaternion()
def compare_three_number_systems(self):
numbers = self.get_example_numbers()
labels = VGroup(
TextMobject("Complex number"),
TextMobject("Not-actually-a-number-system 3d number"),
TextMobject("Quaternion"),
)
for number, label in zip(numbers, labels):
label.next_to(number, UP, aligned_edge=LEFT)
self.play(
FadeInFromDown(number),
Write(label),
)
self.play(CircleThenFadeAround(
number[2:],
surrounding_rectangle_config={"color": BLUE}
))
self.wait()
shift_size = FRAME_HEIGHT / 2 - labels[2].get_top()[1] - MED_LARGE_BUFF
self.play(
numbers.shift, shift_size * UP,
labels.shift, shift_size * UP,
)
self.numbers = numbers
self.labels = labels
def mention_four_perpendicular_axes(self):
number = self.numbers[2]
three_axes = VGroup(*[
self.get_simple_axes(label, color)
for label, color in zip(
["i", "j", "k"],
[GREEN, RED, BLUE],
)
])
three_axes.arrange_submobjects(RIGHT, buff=LARGE_BUFF)
three_axes.next_to(number, DOWN, LARGE_BUFF)
self.play(LaggedStart(FadeInFromLarge, three_axes))
self.wait(2)
self.three_axes = three_axes
def bring_back_complex(self):
numbers = self.numbers
labels = self.labels
numbers[0].move_to(numbers[1], LEFT)
labels[0].move_to(labels[1], LEFT)
numbers.remove(numbers[1])
labels.remove(labels[1])
group = VGroup(numbers, labels)
self.play(
group.to_edge, UP,
FadeOutAndShift(self.three_axes, DOWN)
)
self.wait()
def show_components_of_quaternion(self):
quat = self.numbers[-1]
real_part = quat[0]
imag_part = quat[2:]
real_brace = Brace(real_part, DOWN)
imag_brace = Brace(imag_part, DOWN)
real_word = TextMobject("Real \\\\ part")
imag_word = TextMobject("Imaginary \\\\ part")
scalar_word = TextMobject("Scalar \\\\ part")
vector_word = TextMobject("``Vector'' \\\\ part")
for word in real_word, scalar_word:
word.next_to(real_brace, DOWN, SMALL_BUFF)
for word in imag_word, vector_word:
word.next_to(imag_brace, DOWN, SMALL_BUFF)
braces = VGroup(real_brace, imag_brace)
VGroup(scalar_word, vector_word).set_color(YELLOW)
self.play(
LaggedStart(GrowFromCenter, braces),
LaggedStart(
FadeInFrom, VGroup(real_word, imag_word),
lambda m: (m, UP)
)
)
self.wait()
self.play(
FadeOutAndShift(real_word, DOWN),
FadeInFrom(scalar_word, DOWN),
)
self.wait(2)
self.play(ChangeDecimalToValue(real_part, 0))
self.wait()
self.play(
FadeOutAndShift(imag_word, DOWN),
FadeInFrom(vector_word, DOWN)
)
self.wait(2)
#
def get_example_numbers(self):
number_2d = VGroup(
DecimalNumber(3.14),
TexMobject("+"),
DecimalNumber(1.59),
TexMobject("i")
)
number_3d = VGroup(
DecimalNumber(2.65),
TexMobject("+"),
DecimalNumber(3.58),
TexMobject("i"),
TexMobject("+"),
DecimalNumber(9.79),
TexMobject("j"),
)
number_4d = VGroup(
DecimalNumber(3.23),
TexMobject("+"),
DecimalNumber(8.46),
TexMobject("i"),
TexMobject("+"),
DecimalNumber(2.64),
TexMobject("j"),
TexMobject("+"),
DecimalNumber(3.38),
TexMobject("k"),
)
numbers = VGroup(number_2d, number_3d, number_4d)
for number in numbers:
number.arrange_submobjects(RIGHT, buff=SMALL_BUFF)
for part in number:
if isinstance(part, TexMobject):
# part.set_color_by_tex_to_color_map({
# "i": GREEN,
# "j": RED,
# "k": BLUE,
# })
if part.get_tex_string() == "j":
part.shift(0.5 * SMALL_BUFF * DL)
number[2].set_color(GREEN)
if len(number) > 5:
number[5].set_color(RED)
if len(number) > 8:
number[8].set_color(BLUE)
numbers.arrange_submobjects(
DOWN, buff=2, aligned_edge=LEFT
)
numbers.center()
numbers.shift(LEFT)
return numbers
def get_simple_axes(self, label, color):
axes = Axes(
x_min=-2.5,
x_max=2.5,
y_min=-2.5,
y_max=2.5,
)
axes.set_height(2.5)
label_mob = TexMobject(label)
label_mob.set_color(color)
label_mob.next_to(axes.coords_to_point(0, 1.5), RIGHT, SMALL_BUFF)
reals_label_mob = TextMobject("Reals")
reals_label_mob.next_to(
axes.coords_to_point(1, 0), DR, SMALL_BUFF
)
axes.add(label_mob, reals_label_mob)
return axes
class SimpleImaginaryQuaternionAxes(SpecialThreeDScene):
def construct(self):
self.three_d_axes_config.update({
"number_line_config": {"unit_size": 2},
"x_min": -2,
"x_max": 2,
"y_min": -2,
"y_max": 2,
"z_min": -1.25,
"z_max": 1.25,
})
axes = self.get_axes()
labels = VGroup(*[
TexMobject(tex).set_color(color)
for tex, color in zip(
["i", "j", "k"],
[GREEN, RED, BLUE]
)
])
labels[0].next_to(axes.coords_to_point(1, 0, 0), DOWN + IN, SMALL_BUFF)
labels[1].next_to(axes.coords_to_point(0, 1, 0), RIGHT, SMALL_BUFF)
labels[2].next_to(axes.coords_to_point(0, 0, 1), RIGHT, SMALL_BUFF)
self.add(axes)
self.add(labels)
for label in labels:
self.add_fixed_orientation_mobjects(label)
self.move_camera(**self.get_default_camera_position())
self.begin_ambient_camera_rotation(rate=0.05)
self.wait(15)
class ShowDotProductCrossProductFromOfQMult(Scene):
def construct(self):
v_tex = "\\vec{\\textbf{v}}"
product = TexMobject(
"(", "w_1", "+",
"x_1", "i", "+", "y_1", "j", "+", "z_1", "k", ")"
"(", "w_2", "+",
"x_2", "i", "+", "y_2", "j", "+", "z_2", "k", ")",
"=",
"(w_1", ",", v_tex + "_1", ")",
"(w_2", ",", v_tex + "_2", ")",
"="
)
product.set_width(FRAME_WIDTH - 1)
i1 = product.index_of_part_by_tex("x_1")
i2 = product.index_of_part_by_tex(")")
i3 = product.index_of_part_by_tex("x_2")
i4 = product.index_of_part_by_tex("z_2") + 2
vector_parts = [product[i1:i2], product[i3:i4]]
vector_defs = VGroup()
braces = VGroup()
for i, vp in zip(it.count(1), vector_parts):
brace = Brace(vp, UP)
vector = Matrix([
["x_" + str(i)],
["y_" + str(i)],
["z_" + str(i)],
])
colors = [GREEN, RED, BLUE]
for mob, color in zip(vector.get_entries(), colors):
mob.set_color(color)
group = VGroup(
TexMobject("{}_{} = ".format(v_tex, i)),
vector,
)
group.arrange_submobjects(RIGHT, SMALL_BUFF)
group.next_to(brace, UP)
braces.add(brace)
vector_defs.add(group)
result = TexMobject(
"\\left(", "w_1", "w_2",
"-", v_tex + "_1", "\\cdot", v_tex, "_2", ",\\,",
"w_1", v_tex + "_2", "+", "w_2", v_tex + "_1",
"+", "{}_1 \\times {}_2".format(v_tex, v_tex),
"\\right)"
)
result.match_width(product)
result.next_to(product, DOWN, LARGE_BUFF)
for mob in product, result:
mob.set_color_by_tex_to_color_map({
"w": YELLOW,
"x": GREEN,
"y": RED,
"z": BLUE,
})
mob.set_color_by_tex(v_tex, WHITE)
self.add(product)
self.add(braces)
self.add(vector_defs)
self.play(LaggedStart(FadeInFromLarge, result))
self.wait()
class ShowComplexMagnitude(ShowComplexMultiplicationExamples):
def construct(self):
self.add_planes()
plane = self.plane
tex_to_color_map = {
"a": YELLOW,
"b": GREEN,
}
z = complex(3, 2)
z_point = plane.number_to_point(z)
z_dot = Dot(z_point)
z_dot.set_color(PINK)
z_line = Line(plane.number_to_point(0), z_point)
z_line.set_stroke(WHITE, 2)
z_label = TexMobject(
"z", "=", "a", "+", "b", "i",
tex_to_color_map=tex_to_color_map
)
z_label.add_background_rectangle()
z_label.next_to(z_dot, UR, buff=SMALL_BUFF)
z_norm_label = TexMobject("||z||")
z_norm_label.add_background_rectangle()
z_norm_label.next_to(ORIGIN, UP, SMALL_BUFF)
z_norm_label.rotate(z_line.get_angle(), about_point=ORIGIN)
z_norm_label.shift(z_line.get_center())
h_line = Line(
plane.number_to_point(0),
plane.number_to_point(z.real),
stroke_color=YELLOW,
stroke_width=5,
)
v_line = Line(
plane.number_to_point(z.real),
plane.number_to_point(z),
stroke_color=GREEN,
stroke_width=5,
)
z_norm_equation = TexMobject(
"||z||", "=", "\\sqrt", "{a^2", "+", "b^2", "}",
tex_to_color_map=tex_to_color_map
)
z_norm_equation.set_background_stroke(width=0)
z_norm_equation.add_background_rectangle()
z_norm_equation.next_to(z_label, UP)
self.add(z_line, h_line, v_line, z_dot, z_label)
self.play(ShowCreation(z_line))
self.play(FadeInFromDown(z_norm_label))
self.wait()
self.play(
FadeIn(z_norm_equation[0]),
FadeIn(z_norm_equation[2:]),
TransformFromCopy(
z_norm_label[1:],
VGroup(z_norm_equation[1]),
),
)
self.wait()
class BreakUpQuaternionMultiplicationInParts(Scene):
def construct(self):
q1_color = MAROON_B
q2_color = YELLOW
product = TexMobject(
"q_1", "\\cdot", "q_2", "=",
"\\left(", "{q_1", "\\over", "||", "q_1", "||}", "\\right)",
"||", "q_1", "||", "\\cdot", "q_2",
)
product.set_color_by_tex("q_1", q1_color)
product.set_color_by_tex("q_2", q2_color)
lhs = product[:3]
scale_part = product[-5:]
rotate_part = product[4:-5]
lhs_rect = SurroundingRectangle(lhs)
lhs_rect.set_color(YELLOW)
lhs_words = TextMobject("Quaternion \\\\ multiplication")
lhs_words.next_to(lhs_rect, UP, LARGE_BUFF)
scale_brace = Brace(scale_part, UP)
rotate_brace = Brace(rotate_part, DOWN)
scale_words = TextMobject("Scale", "$q_2$")
scale_words.set_color_by_tex("q_2", q2_color)
scale_words.next_to(scale_brace, UP)
rotate_words = TextMobject("Apply special \\\\ 4d rotation")
rotate_words.next_to(rotate_brace, DOWN)
norm_equation = TexMobject(
"||", "q_1", "||", "=",
"||", "w_1", "+",
"x_1", "i", "+",
"y_1", "j", "+",
"z_1", "k", "||", "=",
"\\sqrt",
"{w_1^2", "+",
"x_1^2", "+",
"y_1^2", "+",
"z_1^2", "}",
)
# norm_equation.set_color_by_tex_to_color_map({
# "w": YELLOW,
# "x": GREEN,
# "y": RED,
# "z": BLUE,
# })
norm_equation.set_color_by_tex("q_1", q1_color)
norm_equation.to_edge(UP)
norm_equation.set_background_stroke(width=0)
line1 = Line(ORIGIN, 0.5 * LEFT + 3 * UP)
line2 = Line(ORIGIN, UR)
zero_dot = Dot()
zero_label = TexMobject("0")
zero_label.next_to(zero_dot, DOWN, SMALL_BUFF)
q1_dot = Dot(line1.get_end())
q2_dot = Dot(line2.get_end())
q1_label = TexMobject("q_1").next_to(q1_dot, UP, SMALL_BUFF)
q2_label = TexMobject("q_2").next_to(q2_dot, UR, SMALL_BUFF)
VGroup(q1_dot, q1_label).set_color(q1_color)
VGroup(q2_dot, q2_label).set_color(q2_color)
dot_group = VGroup(
line1, line2, q1_dot, q2_dot, q1_label, q2_label,
zero_dot, zero_label,
)
dot_group.set_height(3)
dot_group.center()
dot_group.to_edge(LEFT)
q1_dot.add_updater(lambda d: d.move_to(line1.get_end()))
q1_label.add_updater(lambda l: l.next_to(q1_dot, UP, SMALL_BUFF))
q2_dot.add_updater(lambda d: d.move_to(line2.get_end()))
q2_label.add_updater(lambda l: l.next_to(q2_dot, UR, SMALL_BUFF))
self.add(norm_equation)
self.wait()
self.play(
FadeInFromDown(lhs),
Write(dot_group),
)
self.add(*dot_group)
self.add(
VGroup(line2, q2_dot, q2_label).copy().fade(0.5)
)
self.play(
ShowCreation(lhs_rect),
FadeIn(lhs_words)
)
self.play(FadeOut(lhs_rect))
self.wait()
self.play(
TransformFromCopy(lhs, product[3:]),
# FadeOut(lhs_words)
)
self.play(
GrowFromCenter(scale_brace),
Write(scale_words),
)
self.play(
line2.scale, 2, {"about_point": line2.get_start()}
)
self.wait()
self.play(
GrowFromCenter(rotate_brace),
FadeInFrom(rotate_words, UP),
)
self.play(
Rotate(
line2, -line1.get_angle(),
about_point=line2.get_start(),
run_time=3
)
)
self.wait()
# Ask
randy = Randolph(height=2)
randy.flip()
randy.next_to(rotate_words, RIGHT)
randy.to_edge(DOWN)
q_marks = TexMobject("???")
random.shuffle(q_marks.submobjects)
q_marks.next_to(randy, UP)
self.play(
FadeIn(randy)
)
self.play(
randy.change, "confused", rotate_words,
CircleThenFadeAround(rotate_words),
)
self.play(LaggedStart(
FadeInFrom, q_marks,
lambda m: (m, LEFT),
lag_ratio=0.8,
))
self.play(Blink(randy))
self.wait(2)
class SphereProjectionsWrapper(Scene):
def construct(self):
rect_rows = VGroup(*[
VGroup(*[
ScreenRectangle(height=3)
for x in range(3)
]).arrange_submobjects(RIGHT, buff=LARGE_BUFF)
for y in range(2)
]).arrange_submobjects(DOWN, buff=2 * LARGE_BUFF)
rect_rows.set_width(FRAME_WIDTH - 1)
sphere_labels = VGroup(
TextMobject("Circle in 2d"),
TextMobject("Sphere in 3d"),
TextMobject("Hypersphere in 4d"),
)
for label, rect in zip(sphere_labels, rect_rows[0]):
label.next_to(rect, UP)
projected_labels = VGroup(
TextMobject("Sterographically projected \\\\ circle in 1d"),
TextMobject("Sterographically projected \\\\ sphere in 2d"),
TextMobject("Sterographically projected \\\\ hypersphere in 3d"),
)
for label, rect in zip(projected_labels, rect_rows[1]):
label.match_width(rect)
label.next_to(rect, UP)
q_marks = TexMobject("???")
q_marks.scale(2)
q_marks.move_to(rect_rows[0][2])
self.add(rect_rows)
for l1, l2 in zip(sphere_labels, projected_labels):
added_anims = []
if l1 is sphere_labels[2]:
added_anims.append(FadeIn(q_marks))
self.play(FadeIn(l1), *added_anims)
self.play(FadeIn(l2))
self.wait()
class HypersphereStereographicProjection(SpecialThreeDScene):
CONFIG = {
# "fancy_dot": False,
"fancy_dot": True,
"initial_quaternion_sample_values": [
[0, 1, 0, 0],
[-1, 1, 0, 0],
[0, 0, 1, 1],
[0, 1, -1, 1],
]
}
def construct(self):
self.setup_axes()
self.introduce_quaternion_label()
self.show_one()
self.show_unit_sphere()
self.show_quaternions_with_nonzero_real_part()
self.emphasize_only_units()
self.show_reference_spheres()
def setup_axes(self):
axes = self.axes = self.get_axes()
axes.set_stroke(width=1)
self.add(axes)
self.move_camera(
**self.get_default_camera_position(),
run_time=0
)
self.begin_ambient_camera_rotation(rate=0.01)
def introduce_quaternion_label(self):
q_tracker = QuaternionTracker()
coords = [
DecimalNumber(0, color=color, include_sign=sign, edge_to_fix=RIGHT)
for color, sign in zip(
[YELLOW, GREEN, RED, BLUE],
[False, True, True, True],
)
]
label = VGroup(
coords[0], VectorizedPoint(),
coords[1], TexMobject("i"),
coords[2], TexMobject("j"),
coords[3], TexMobject("k"),
)
label.arrange_submobjects(RIGHT, buff=SMALL_BUFF)
label.to_corner(UR)
def update_label(label):
self.remove_fixed_in_frame_mobjects(label)
quat = q_tracker.get_value()
for value, coord in zip(quat, label[::2]):
coord.set_value(value)
self.add_fixed_in_frame_mobjects(label)
return label
label.add_updater(update_label)
def get_pq_point():
point = self.project_quaternion(q_tracker.get_value())
if get_norm(point) > 100:
return point * 100 / get_norm(point)
return point
pq_dot = self.get_dot()
pq_dot.add_updater(lambda d: d.move_to(get_pq_point()))
dot_radius = pq_dot.get_width() / 2
def get_pq_line():
point = get_pq_point()
norm = get_norm(point)
if norm > dot_radius:
point *= (norm - dot_radius) / norm
result = Line(ORIGIN, point)
result.set_stroke(width=1)
return result
pq_line = get_pq_line()
pq_line.add_updater(lambda cl: cl.become(get_pq_line()))
self.add(q_tracker, label, pq_line, pq_dot)
self.q_tracker = q_tracker
self.q_label = label
self.pq_line = pq_line
self.pq_dot = pq_dot
rect = SurroundingRectangle(label, color=WHITE)
self.add_fixed_in_frame_mobjects(rect)
self.play(ShowCreation(rect))
self.play(FadeOut(rect))
self.remove_fixed_orientation_mobjects(rect)
for value in self.initial_quaternion_sample_values:
self.set_quat(value)
self.wait()
def show_one(self):
q_tracker = self.q_tracker
one_label = TexMobject("1")
one_label.rotate(TAU / 4, RIGHT)
one_label.next_to(ORIGIN, IN + RIGHT, SMALL_BUFF)
one_label.set_shade_in_3d(True)
one_label.set_background_stroke(width=0)
self.play(
ApplyMethod(
q_tracker.set_value, [1, 0, 0, 0],
run_time=2
),
FadeInFromDown(one_label)
)
self.wait(4)
def show_unit_sphere(self):
sphere = self.sphere = self.get_projected_sphere(
quaternion=[1, 0, 0, 0], null_axis=0,
solid=False,
stroke_width=0.5
)
self.specially_color_sphere(sphere)
labels = self.get_unit_labels()
labels.remove(labels[3])
real_part = self.q_label[0]
brace = Brace(real_part, DOWN)
words = TextMobject("Real part zero")
words.next_to(brace, DOWN, SMALL_BUFF, LEFT)
self.play(Write(sphere))
self.play(LaggedStart(
FadeInFrom, labels,
lambda m: (m, IN)
))
self.add_fixed_in_frame_mobjects(brace, words)
self.set_quat(
[0, 1, 0, 0],
added_anims=[
GrowFromCenter(brace),
Write(words),
]
)
self.wait()
self.set_quat([0, 1, -1, 1])
self.wait(2)
self.set_quat([0, -1, -1, 1])
self.wait(2)
self.set_quat([0, 0, 0, 1])
self.wait(2)
self.set_quat([0, 0, -1, 0])
self.wait(2)
self.set_quat([0, 1, 0, 0])
self.wait(2)
self.play(FadeOut(words))
self.remove_fixed_in_frame_mobjects(words)
self.real_part_brace = brace
def show_quaternions_with_nonzero_real_part(self):
# Positive real part
self.set_quat([1, 1, 2, 0])
self.wait(2)
self.set_quat([4, 0, -1, -1])
self.wait(2)
# Negative real part
self.set_quat([-1, 1, 2, 0])
self.wait(2)
self.set_quat([-2, 0, -1, 1])
self.wait(2)
self.set_quat([-1, 1, 0, 0])
self.move_camera(theta=-160 * DEGREES, run_time=3)
self.set_quat([-1, 0.001, 0, 0])
self.wait(2)
def emphasize_only_units(self):
q_label = self.q_label
brace = self.real_part_brace
brace.target = Brace(q_label, DOWN, buff=SMALL_BUFF)
words = TextMobject(
"Only those where \\\\",
"$w^2 + x^2 + y^2 + z^2 = 1$"
)
words.next_to(brace.target, DOWN, SMALL_BUFF)
self.add_fixed_in_frame_mobjects(words)
self.play(
MoveToTarget(brace),
Write(words)
)
self.set_quat([1, 1, 1, 1])
self.wait(2)
self.set_quat([1, 1, -1, 1])
self.wait(2)
self.set_quat([-1, 1, -1, 1])
self.wait(8)
self.play(FadeOut(brace), FadeOut(words))
self.remove_fixed_in_frame_mobjects(brace, words)
# TODO
def show_reference_spheres(self):
sphere = self.sphere
self.move_camera(
phi=60 * DEGREES,
theta=-150 * DEGREES,
added_anims=[
self.q_tracker.set_value, [1, 0, 0, 0]
]
)
sphere_ijk = self.get_projected_sphere(null_axis=0)
sphere_1jk = self.get_projected_sphere(null_axis=1)
sphere_1ik = self.get_projected_sphere(null_axis=2)
sphere_1ij = self.get_projected_sphere(null_axis=3)
circle = StereoProjectedCircleFromHypersphere(axes=[0, 1])
circle_words = TextMobject(
"Circle through\\\\", "$1, i, -1, -i$"
)
sphere_1ij_words = TextMobject(
"Sphere through\\\\", "$1, i, j, -1, -i, -j$"
)
sphere_1jk_words = TextMobject(
"Sphere through\\\\", "$1, j, k, -1, -j, -k$"
)
sphere_1ik_words = TextMobject(
"Sphere through\\\\", "$1, i, k, -1, -i, -k$"
)
for words in [circle_words, sphere_1ij_words, sphere_1jk_words, sphere_1ik_words]:
words.to_corner(UL)
self.add_fixed_in_frame_mobjects(words)
self.play(
ShowCreation(circle),
Write(circle_words),
)
self.set_quat([0, 1, 0, 0])
self.set_quat([1, 0, 0, 0])
self.remove(sphere)
sphere_ijk.match_style(sphere)
self.add(sphere_ijk)
# Show xy plane
self.play(
FadeOutAndShift(circle_words, DOWN),
FadeInFromDown(sphere_1ij_words),
FadeOut(circle),
sphere_ijk.set_stroke, {"width": 0.0}
)
self.play(Write(sphere_1ij))
self.wait(10)
return
# Show yz plane
self.play(
FadeOutAndShift(sphere_1ij_words, DOWN),
FadeInFromDown(sphere_1jk_words),
sphere_1ij.set_fill, BLUE_E, 0.25,
sphere_1ij.set_stroke, {"width": 0.0},
Write(sphere_1jk)
)
self.wait(5)
# Show xz plane
self.play(
FadeOutAndShift(sphere_1jk_words, DOWN),
FadeInFromDown(sphere_1ik_words),
sphere_1jk.set_fill, GREEN_E, 0.25,
sphere_1jk.set_stroke, {"width": 0.0},
Write(sphere_1ik)
)
self.wait(5)
self.play(
sphere_1ik.set_fill, RED_E, 0.25,
sphere_1ik.set_stroke, {"width": 0.0},
FadeOut(sphere_1ik_words)
)
# Start applying quaternion multiplication
kwargs = {"solid": False, "stroke_width": 0}
sphere_ijk.add_updater(
lambda s: s.become(self.get_projected_sphere(0, **kwargs))
)
sphere_1jk.add_updater(
lambda s: s.become(self.get_projected_sphere(1, **kwargs))
)
sphere_1ik.add_updater(
lambda s: s.become(self.get_projected_sphere(2, **kwargs))
)
sphere_1ij.add_updater(
lambda s: s.become(self.get_projected_sphere(3, **kwargs))
)
self.set_quat([0, 1, 1, 1])
#
def project_quaternion(self, quat):
return self.axes.coords_to_point(
*stereo_project_point(quat, axis=0, r=1)[1:]
)
def get_dot(self):
if self.fancy_dot:
sphere = self.get_sphere()
sphere.set_width(0.2)
sphere.set_stroke(width=0)
sphere.set_fill(PINK)
return sphere
else:
return VGroup(
Dot(color=PINK),
Dot(color=PINK).rotate(TAU / 4, RIGHT),
)
def get_unit_labels(self):
c2p = self.axes.coords_to_point
tex_coords_vects = [
("i", [1, 0, 0], IN + RIGHT),
("-i", [-1, 0, 0], IN + LEFT),
("j", [0, 1, 0], UP + OUT + RIGHT),
("-j", [0, -1, 0], RIGHT + DOWN),
("k", [0, 0, 1], OUT + RIGHT),
("-k", [0, 0, -1], IN + RIGHT),
]
labels = VGroup()
for tex, coords, vect in tex_coords_vects:
label = TexMobject(tex)
label.rotate(90 * DEGREES, RIGHT)
label.next_to(c2p(*coords), vect, SMALL_BUFF)
labels.add(label)
labels.set_shade_in_3d(True)
labels.set_background_stroke(width=0)
return labels
def set_quat(self, value, run_time=3, added_anims=None):
if added_anims is None:
added_anims = []
self.play(
self.q_tracker.set_value, value,
*added_anims,
run_time=run_time
)
def get_projected_sphere(self, null_axis, quaternion=None, solid=True, **kwargs):
if quaternion is None:
quaternion = self.get_multiplier()
axes_to_color = {
0: interpolate_color(YELLOW, BLACK, 0.5),
1: GREEN_E,
2: RED_D,
3: BLUE_E,
}
color = axes_to_color[null_axis]
config = dict(self.sphere_config)
config.update({
"stroke_color": WHITE,
"stroke_width": 0.5,
"stroke_opacity": 0.5,
"max_r": 24,
})
if solid:
config.update({
"checkerboard_colors": [
color, interpolate_color(color, BLACK, 0.5)
],
"fill_opacity": 1,
})
else:
config.update({
"checkerboard_colors": [],
"fill_color": color,
"fill_opacity": 0.25,
})
config.update(kwargs)
sphere = StereoProjectedSphereFromHypersphere(
quaternion=quaternion,
null_axis=null_axis,
**config
)
sphere.set_shade_in_3d(True)
return sphere
def get_projected_circle(self, quaternion=None, **kwargs):
if quaternion is None:
quaternion = self.get_multiplier()
return StereoProjectedCircleFromHypersphere(quaternion, **kwargs)
def get_multiplier(self):
return self.q_tracker.get_value()
def specially_color_sphere(self, sphere):
for submob in sphere:
u, v = submob.u1, submob.v1
x = np.cos(v) * np.sin(u)
y = np.sin(v) * np.sin(u)
z = np.cos(u)
rgb = sum([
(x**2) * hex_to_rgb(GREEN),
(y**2) * hex_to_rgb(RED),
(z**2) * hex_to_rgb(BLUE),
])
clip_in_place(rgb, 0, 1)
submob.set_fill(rgb_to_hex(rgb))
return sphere
class RuleOfQuaternionMultiplicationOverlay(Scene):
def construct(self):
q_mob, times_mob, p_mob = q_times_p = TexMobject(
"q", "\\cdot", "p"
)
q_times_p.scale(2)
q_mob.set_color(MAROON_B)
p_mob.set_color(YELLOW)
q_arrow = Vector(DOWN, color=WHITE)
q_arrow.next_to(q_mob, UP)
p_arrow = Vector(UP, color=WHITE)
p_arrow.next_to(p_mob, DOWN)
q_words = TextMobject("Think of as\\\\ an action")
q_words.next_to(q_arrow, UP)
p_words = TextMobject("Think of as\\\\ a point")
p_words.next_to(p_arrow, DOWN)
i_mob = TexMobject("i")[0]
i_mob.scale(2)
i_mob.move_to(q_mob, RIGHT)
i_mob.set_color(GREEN)
self.add(q_times_p)
self.play(
FadeInFrom(q_words, UP),
GrowArrow(q_arrow),
)
self.play(
FadeInFrom(p_words, DOWN),
GrowArrow(p_arrow),
)
self.wait()
self.play(*map(FadeOut, [
q_words, q_arrow,
p_words, p_arrow,
]))
self.play(
FadeInFromDown(i_mob),
FadeOutAndShift(q_mob, UP)
)
product = VGroup(i_mob, times_mob, p_mob)
self.play(product.to_edge, UP)
# Show i products
underline = Line(LEFT, RIGHT)
underline.set_width(product.get_width() + MED_SMALL_BUFF)
underline.next_to(product, DOWN)
kwargs = {
"tex_to_color_map": {
"i": GREEN,
"j": RED,
"k": BLUE
}
}
i_products = VGroup(
TexMobject("i", "\\cdot", "1", "=", "1", **kwargs),
TexMobject("i", "\\cdot", "i", "=", "-1", **kwargs),
TexMobject("i", "\\cdot", "j", "=", "k", **kwargs),
TexMobject("i", "\\cdot", "k", "=", "-j", **kwargs),
)
i_products.scale(2)
i_products.arrange_submobjects(
DOWN, buff=MED_LARGE_BUFF,
aligned_edge=LEFT,
)
i_products.next_to(underline, DOWN, LARGE_BUFF)
i_products.align_to(i_mob, LEFT)
self.play(ShowCreation(underline))
self.wait()
for i_product in i_products:
self.play(TransformFromCopy(
product, i_product[:3]
))
self.wait()
self.play(TransformFromCopy(
i_product[:3], i_product[3:],
))
self.wait()
rect = SurroundingRectangle(
VGroup(product, i_products),
buff=0.4
)
rect.set_stroke(WHITE, width=5)
self.play(ShowCreation(rect))
self.play(FadeOut(rect))
class RuleOfQuaternionMultiplication(HypersphereStereographicProjection):
CONFIG = {
"fancy_dot": True,
"initial_quaternion_sample_values": [],
}
def construct(self):
self.setup_all_trackers()
self.show_multiplication_by_i_on_circle_1i()
self.show_multiplication_by_i_on_circle_jk()
self.show_multiplication_by_i_on_ijk_sphere()
def setup_all_trackers(self):
self.setup_multiplier_tracker()
self.force_skipping()
self.setup_axes()
self.introduce_quaternion_label()
self.add_unit_labels()
self.revert_to_original_skipping_status()
def setup_multiplier_tracker(self):
self.multiplier_tracker = QuaternionTracker([1, 0, 0, 0])
self.multiplier_tracker.add_updater(
lambda m: m.set_value(normalize(
m.get_value(),
fall_back=[1, 0, 0, 0]
))
)
self.add(self.multiplier_tracker)
def add_unit_labels(self):
labels = self.unit_labels = self.get_unit_labels()
one_label = TexMobject("1")
one_label.set_shade_in_3d(True)
one_label.rotate(90 * DEGREES, RIGHT)
one_label.next_to(ORIGIN, IN + RIGHT, SMALL_BUFF)
self.add(labels, one_label)
def show_multiplication_by_i_on_circle_1i(self):
m_tracker = self.multiplier_tracker
def get_circle_1i():
return self.get_projected_circle(
basis_vectors=[
[1, 0, 0, 0],
[1, 1, 0, 0],
],
colors=[GREEN, YELLOW],
quaternion=m_tracker.get_value(),
)
circle = get_circle_1i()
arrows = self.get_i_circle_arrows()
def set_to_q_value(mt):
mt.set_value(self.q_tracker.get_value())
self.play(ShowCreation(circle, run_time=2))
self.play(LaggedStart(ShowCreation, arrows, lag_ratio=0.25))
self.wait()
circle.add_updater(lambda c: c.become(get_circle_1i()))
m_tracker.add_updater(set_to_q_value)
self.add(m_tracker)
self.set_quat([0, 1, 0, 0])
self.wait()
self.set_quat([-1, 0.001, 0, 0])
self.wait()
self.q_tracker.set_value([-1, -0.001, 0, 0])
self.set_quat([0, -1, 0, 0])
self.wait()
self.set_quat([1, 0, 0, 0])
self.wait(3)
self.play(FadeOut(arrows))
m_tracker.remove_updater(set_to_q_value)
self.circle_1i = circle
def show_multiplication_by_i_on_circle_jk(self):
def get_circle_jk():
return self.get_projected_circle(
basis_vectors=[
[0, 0, 1, 0],
[0, 0, 0, 1],
],
colors=[RED, BLUE_E]
)
circle = get_circle_jk()
arrows = self.get_jk_circle_arrows()
m_tracker = self.multiplier_tracker
q_tracker = self.q_tracker
def set_q_to_mj(qt):
qt.set_value(q_mult(
m_tracker.get_value(), [0, 0, 1, 0]
))
self.move_camera(theta=-50 * DEGREES)
self.play(ShowCreation(circle, run_time=2))
circle.add_updater(lambda c: c.become(get_circle_jk()))
self.wait(10)
self.stop_ambient_camera_rotation()
self.begin_ambient_camera_rotation(rate=-0.01)
self.play(*map(ShowCreation, arrows))
self.wait()
self.set_quat([0, 0, 1, 0], run_time=1)
q_tracker.add_updater(set_q_to_mj, index=0)
self.add(self.circle_1i)
self.play(
m_tracker.set_value, [0, 1, 0, 0],
run_time=3
)
self.wait()
self.play(
m_tracker.set_value, [-1, 0.001, 0, 0],
run_time=3
)
self.wait()
m_tracker.set_value([-1, 0.001, 0, 0])
self.play(
m_tracker.set_value, [0, -1, 0, 0],
run_time=3
)
self.wait()
self.play(
m_tracker.set_value, [1, 0, 0, 0],
run_time=3
)
self.wait()
q_tracker.remove_updater(set_q_to_mj)
self.play(
FadeOut(arrows),
q_tracker.set_value, [1, 0, 0, 0],
)
self.wait(10)
self.circle_jk = circle
def show_multiplication_by_i_on_ijk_sphere(self):
m_tracker = self.multiplier_tracker
q_tracker = self.q_tracker
m_tracker.add_updater(lambda m: m.set_value(q_tracker.get_value()))
def get_sphere():
result = self.get_projected_sphere(null_axis=0, solid=False)
self.specially_color_sphere(result)
return result
sphere = get_sphere()
self.play(Write(sphere))
sphere.add_updater(lambda s: s.become(get_sphere()))
self.set_quat([0, 1, 0, 0])
self.wait()
self.set_quat([-1, 0.001, 0, 0])
self.wait()
self.q_tracker.set_value([-1, -0.001, 0, 0])
self.set_quat([0, -1, 0, 0])
self.wait()
self.set_quat([1, 0, 0, 0])
self.wait(3)
#
def get_multiplier(self):
return self.multiplier_tracker.get_value()
def get_i_circle_arrows(self):
c2p = self.axes.coords_to_point
i_arrow = Arrow(
ORIGIN, 2 * RIGHT, path_arc=-120 * DEGREES,
use_rectangular_stem=False,
buff=SMALL_BUFF,
)
neg_one_arrow = Arrow(
ORIGIN, 5.5 * RIGHT + UP,
path_arc=-30 * DEGREES,
use_rectangular_stem=False,
buff=SMALL_BUFF,
)
neg_i_arrow = Arrow(
4.5 * LEFT + 1.5 * UP, ORIGIN,
path_arc=-30 * DEGREES,
use_rectangular_stem=False,
buff=SMALL_BUFF,
)
one_arrow = i_arrow.copy()
result = VGroup(i_arrow, neg_one_arrow, neg_i_arrow, one_arrow)
for arrow in result:
arrow.set_color(LIGHT_GREY)
arrow.set_stroke(width=3)
arrow.rotate(90 * DEGREES, RIGHT)
i_arrow.next_to(c2p(0, 0, 0), OUT + RIGHT, SMALL_BUFF)
neg_one_arrow.next_to(c2p(1, 0, 0), OUT + RIGHT, SMALL_BUFF)
neg_i_arrow.next_to(c2p(-1, 0, 0), OUT + LEFT, SMALL_BUFF)
one_arrow.next_to(c2p(0, 0, 0), OUT + LEFT, SMALL_BUFF)
return result
def get_jk_circle_arrows(self):
arrow = Arrow(
1.5 * RIGHT, 1.5 * UP,
path_arc=90 * DEGREES,
buff=SMALL_BUFF,
use_rectangular_stem=False
)
arrow.set_color(LIGHT_GREY)
arrow.set_stroke(width=3)
arrows = VGroup(*[
arrow.copy().rotate(angle, about_point=ORIGIN)
for angle in np.arange(0, TAU, TAU / 4)
])
arrows.rotate(90 * DEGREES, RIGHT)
arrows.rotate(90 * DEGREES, OUT)
return arrows
class ShowDistributionOfI(TeacherStudentsScene):
def construct(self):
tex_to_color_map = {
"q": PINK,
"w": YELLOW,
"x": GREEN,
"y": RED,
"z": BLUE,
}
top_product = TexMobject(
"q", "\\cdot", "\\left(",
"w", "+", "x", "i", "+", "y", "j", "+", "z", "k",
"\\right)"
)
top_product.to_edge(UP)
self.add(top_product)
bottom_product = TexMobject(
"q", "w",
"+", "x", "q", "\\cdot", "i",
"+", "y", "q", "\\cdot", "j",
"+", "z", "q", "\\cdot", "k",
)
bottom_product.next_to(top_product, DOWN, MED_LARGE_BUFF)
for product in [top_product, bottom_product]:
for tex, color in tex_to_color_map.items():
product.set_color_by_tex(tex, color, substring=False)
self.student_says(
"What does it do \\\\ to other quaternions?",
target_mode="raise_left_hand"
)
self.change_student_modes(
"pondering", "raise_left_hand", "erm",
look_at_arg=top_product,
)
self.wait(2)
self.play(
self.teacher.change, "raise_right_hand",
RemovePiCreatureBubble(self.students[1], target_mode="pondering"),
*[
TransformFromCopy(
top_product.get_parts_by_tex(tex, substring=False),
bottom_product.get_parts_by_tex(tex, substring=False),
run_time=2
)
for tex in ["w", "x", "i", "y", "j", "z", "k", "+"]
]
)
self.play(*[
TransformFromCopy(
top_product.get_parts_by_tex(tex, substring=False),
bottom_product.get_parts_by_tex(tex, substring=False),
run_time=2
)
for tex in ["q", "\\cdot"]
])
self.change_all_student_modes("thinking")
self.wait(3)
class ShowMultiplicationBy135Example(RuleOfQuaternionMultiplication):
CONFIG = {
"fancy_dot": True,
}
def construct(self):
self.setup_all_trackers()
self.add_circles()
self.add_ijk_sphere()
self.show_multiplication()
def add_circles(self):
self.circle_1i = self.add_auto_updating_circle(
basis_vectors=[
[1, 0, 0, 0],
[0, 1, 0, 0],
],
colors=[YELLOW, GREEN_E]
)
self.circle_jk = self.add_auto_updating_circle(
basis_vectors=[
[0, 0, 1, 0],
[0, 0, 0, 1],
],
colors=[RED, BLUE_E]
)
def add_auto_updating_circle(self, **circle_config):
circle = self.get_projected_circle(**circle_config)
circle.add_updater(
lambda c: c.become(self.get_projected_circle(**circle_config))
)
self.add(circle)
return circle
def add_ijk_sphere(self):
def get_sphere():
result = self.get_projected_sphere(
null_axis=0,
solid=False,
stroke_width=0.5,
stroke_opacity=0.2,
fill_opacity=0.1,
)
self.specially_color_sphere(result)
return result
sphere = get_sphere()
sphere.add_updater(lambda s: s.become(get_sphere()))
self.add(sphere)
self.sphere = sphere
def show_multiplication(self):
m_tracker = self.multiplier_tracker
quat = normalize(np.array([-1, 1, 0, 0]))
point = self.project_quaternion(quat)
arrow = Vector(DR)
arrow.next_to(point, UL, MED_SMALL_BUFF)
arrow.set_color(PINK)
label = TexMobject(
"-{\\sqrt{2} \\over 2}", "+",
"{\\sqrt{2} \\over 2}", "i",
)
label.next_to(arrow.get_start(), UP)
label.set_background_stroke(width=0)
def get_one_point():
return self.circle_1i[0].points[0]
def get_j_point():
return self.circle_jk[0].points[0]
one_point = VectorizedPoint()
one_point.add_updater(lambda v: v.set_location(get_one_point()))
self.add(one_point)
hand = Hand()
hand.rotate(45 * DEGREES, RIGHT)
hand.add_updater(
lambda h: h.move_to(get_one_point(), LEFT)
)
j_line = Line(ORIGIN, get_j_point())
moving_j_line = j_line.deepcopy()
moving_j_line.add_updater(
lambda m: m.put_start_and_end_on(ORIGIN, get_j_point())
)
self.add(j_line, moving_j_line)
self.set_camera_orientation(
phi=60 * DEGREES, theta=-70 * DEGREES
)
self.play(
FadeInFromLarge(label, 3),
GrowArrow(arrow)
)
self.set_quat(quat)
self.wait(5)
self.play(FadeInFromLarge(hand))
self.add(m_tracker)
for q in [quat, [1, 0, 0, 0], quat]:
self.play(
m_tracker.set_value, q,
UpdateFromFunc(
m_tracker,
lambda m: m.set_value(normalize(m.get_value()))
),
run_time=5
)
self.wait()
class JMultiplicationChart(Scene):
def construct(self):
# Largely copy-pasted....what are you gonna do about it?
product = TexMobject("j", "\\cdot", "p")
product[0].set_color(RED)
product.scale(2)
product.to_edge(UP)
underline = Line(LEFT, RIGHT)
underline.set_width(product.get_width() + MED_SMALL_BUFF)
underline.next_to(product, DOWN)
kwargs = {
"tex_to_color_map": {
"i": GREEN,
"j": RED,
"k": BLUE
}
}
j_products = VGroup(
TexMobject("j", "\\cdot", "1", "=", "1", **kwargs),
TexMobject("j", "\\cdot", "j", "=", "-1", **kwargs),
TexMobject("j", "\\cdot", "i", "=", "-k", **kwargs),
TexMobject("j", "\\cdot", "k", "=", "i", **kwargs),
)
j_products.scale(2)
j_products.arrange_submobjects(
DOWN, buff=MED_LARGE_BUFF,
aligned_edge=LEFT,
)
j_products.next_to(underline, DOWN, LARGE_BUFF)
j_products.align_to(product, LEFT)
self.play(FadeInFromDown(product))
self.play(ShowCreation(underline))
self.wait()
for j_product in j_products:
self.play(TransformFromCopy(
product, j_product[:3]
))
self.wait()
self.play(TransformFromCopy(
j_product[:3], j_product[3:],
))
self.wait()
rect = SurroundingRectangle(
VGroup(product, j_products),
buff=MED_SMALL_BUFF
)
rect.set_stroke(WHITE, width=5)
self.play(ShowCreation(rect))
self.play(FadeOut(rect))
class ShowJMultiplication(ShowMultiplicationBy135Example):
CONFIG = {
"fancy_dot": True,
"run_time_per_rotation": 4,
}
def construct(self):
self.setup_all_trackers()
self.add_circles()
self.add_ijk_sphere()
self.show_multiplication()
def add_circles(self):
self.circle_1j = self.add_auto_updating_circle(
basis_vectors=[
[1, 0, 0, 0],
[0, 0, 1, 0],
],
colors=[YELLOW, RED]
)
self.circle_ik = self.add_auto_updating_circle(
basis_vectors=[
[0, 1, 0, 0],
[0, 0, 0, 1],
],
colors=[GREEN, BLUE_E]
)
def show_multiplication(self):
self.set_camera_orientation(theta=-30 * DEGREES)
q_tracker = self.q_tracker
m_tracker = self.multiplier_tracker
def normalize_tracker(t):
t.set_value(normalize(t.get_value()))
updates = [
UpdateFromFunc(tracker, normalize_tracker)
for tracker in (q_tracker, m_tracker)
]
run_time = self.run_time_per_rotation
self.play(
m_tracker.set_value, [0, 0, 1, 0],
q_tracker.set_value, [0, 0, 1, 0],
*updates,
run_time=run_time,
)
self.wait(2)
self.play(
m_tracker.set_value, [-1, 0, 1e-3, 0],
q_tracker.set_value, [-1, 0, 1e-3, 0],
*updates,
run_time=run_time,
)
self.wait(2)
# Show ik circle
self.move_camera(theta=-110 * DEGREES)
m_tracker.set_value([1, 0, 0, 0])
q_tracker.set_value([0, 1, 0, 0])
self.wait()
self.play(
m_tracker.set_value, [0, 0, 1, 0],
q_tracker.set_value, [0, 0, 0, -1],
*updates,
run_time=run_time,
)
self.wait(2)
self.play(
m_tracker.set_value, [-1, 0, 1e-3, 0],
q_tracker.set_value, [0, -1, 0, 0],
*updates,
run_time=run_time,
)
self.wait(2)
class ShowArbitraryMultiplication(ShowMultiplicationBy135Example):
CONFIG = {
"fancy_dot": True,
"run_time_per_rotation": 4,
"special_quaternion": [-0.5, 0.5, 0.5, 0.5],
}
def construct(self):
self.setup_all_trackers()
self.add_circles()
self.add_ijk_sphere()
self.show_multiplication()
def add_circles(self):
self.circle1 = self.add_auto_updating_circle(
basis_vectors=[
[1, 0, 0, 0],
[0, 1, 1, 1],
],
colors=[YELLOW_E, YELLOW]
)
bv1 = normalize([0, -1, -1, 2])
bv2 = [0] + list(normalize(np.cross([1, 1, 1], bv1[1:])))
self.circle2 = self.add_auto_updating_circle(
basis_vectors=[bv1, bv2],
colors=[WHITE, GREY]
)
def show_multiplication(self):
q_tracker = self.q_tracker
m_tracker = self.multiplier_tracker
run_time = self.run_time_per_rotation
def normalize_tracker(t):
t.set_value(normalize(t.get_value()))
# for tracker in q_tracker, m_tracker:
# self.add(ContinualUpdate(tracker, normalize_tracker))
updates = [
UpdateFromFunc(tracker, normalize_tracker)
for tracker in (q_tracker, m_tracker)
]
special_q = self.special_quaternion
pq_point = self.project_quaternion(special_q)
label = TextMobject("Some unit quaternion")
label.set_color(PINK)
label.rotate(90 * DEGREES, RIGHT)
label.next_to(pq_point, IN + RIGHT, SMALL_BUFF)
circle1, circle2 = self.circle1, self.circle2
for circle in [circle1, circle2]:
circle.tucked_away_updaters = circle1.updaters
circle.clear_updaters()
self.remove(circle)
hand = Hand()
hand.rotate(90 * DEGREES, RIGHT)
hand.move_to(ORIGIN, LEFT)
hand.set_shade_in_3d(True)
one_dot = self.get_dot()
one_dot.set_color(YELLOW_E)
one_dot.move_to(ORIGIN)
one_dot.add_updater(
lambda m: m.move_to(circle1[0].points[0])
)
self.add(one_dot)
self.stop_ambient_camera_rotation()
self.begin_ambient_camera_rotation(rate=0.02)
self.set_quat(special_q)
self.play(FadeInFrom(label, IN))
self.wait(3)
for circle in [circle1, circle2]:
self.play(ShowCreation(circle, run_time=3))
circle.updaters = circle.tucked_away_updaters
self.wait(2)
self.play(
FadeInFrom(hand, 2 * IN + 2 * RIGHT),
run_time=2
)
hand.add_updater(
lambda h: h.move_to(circle1[0].points[0], LEFT)
)
for quat in [special_q, [1, 0, 0, 0], special_q]:
self.play(
m_tracker.set_value, special_q,
*updates,
run_time=run_time,
)
self.wait()
class MentionCommutativity(TeacherStudentsScene):
def construct(self):
kwargs = {
"tex_to_color_map": {
"q": MAROON_B,
"p": YELLOW,
"i": GREEN,
"j": RED,
"k": BLUE,
}
}
general_eq = TexMobject("q \\cdot p \\ne p \\cdot q", **kwargs)
general_eq.get_part_by_tex("\\ne").submobjects.reverse()
ij_eq = TexMobject("i \\cdot j = k", **kwargs)
ji_eq = TexMobject("j \\cdot i = -k", **kwargs)
for mob in [general_eq, ij_eq, ji_eq]:
mob.move_to(self.hold_up_spot, DOWN)
words = TextMobject("Multiplication doesn't \\\\ commute")
words.next_to(general_eq, UP, MED_LARGE_BUFF)
words.shift_onto_screen()
joke = TextMobject("Quaternions work from home")
joke.scale(0.75)
joke.to_corner(UL, MED_SMALL_BUFF)
self.play(
FadeInFromDown(general_eq),
self.teacher.change, "raise_right_hand",
self.get_student_changes("erm", "confused", "sassy")
)
self.play(FadeInFrom(words, RIGHT))
self.wait(2)
self.play(
ReplacementTransform(words, joke),
general_eq.shift, UP,
FadeInFromDown(ij_eq),
self.get_student_changes(*["pondering"] * 3)
)
self.look_at(self.screen)
self.wait(3)
self.play(
FadeInFrom(ji_eq),
LaggedStart(
ApplyMethod, VGroup(ij_eq, general_eq),
lambda m: (m.shift, UP),
lag_ratio=0.8,
)
)
self.look_at(self.screen)
self.wait(5)
class RubuiksCubeOperations(SpecialThreeDScene):
def construct(self):
self.set_camera_orientation(**self.get_default_camera_position())
self.begin_ambient_camera_rotation()
cube = RubiksCube()
cube.shift(2.5 * RIGHT)
# for square in cube:
# square.set_sheen(0.2, DOWN + LEFT + IN)
cube2 = cube.copy()
self.add(cube)
self.play(
Rotate(cube.get_face(RIGHT), 90 * DEGREES, RIGHT),
run_time=2
)
self.play(
Rotate(cube.get_face(DOWN), 90 * DEGREES, UP),
run_time=2
)
self.wait()
self.play(
cube.shift, 5 * LEFT,
FadeIn(cube2)
)
self.play(
Rotate(cube2.get_face(DOWN), 90 * DEGREES, UP),
run_time=2
)
self.play(
Rotate(cube2.get_face(RIGHT), 90 * DEGREES, RIGHT),
run_time=2
)
self.wait(6)
class RotationsOfCube(SpecialThreeDScene):
def construct(self):
self.set_camera_orientation(**self.get_default_camera_position())
self.begin_ambient_camera_rotation(0.0001)
cube = RubiksCube()
cube2 = cube.copy()
axes = self.get_axes()
axes.scale(0.75)
label1 = TextMobject(
"z-axis\\\\",
"then x-axis"
)
label2 = TextMobject(
"x-axis\\\\",
"then z-axis"
)
for label in [label1, label2]:
for part in label:
part.add_background_rectangle()
label.rotate(90 * DEGREES, RIGHT)
label.move_to(3 * OUT + 0.5 * IN)
self.add(axes, cube)
self.play(
Rotate(cube, 90 * DEGREES, OUT, run_time=2),
FadeInFrom(label1[0], IN),
)
self.play(
Rotate(cube, 90 * DEGREES, RIGHT, run_time=2),
FadeInFrom(label1[1], IN),
)
self.wait()
self.play(
cube.shift, 5 * RIGHT,
label1.shift, 5 * RIGHT,
Write(cube2, run_time=1)
)
self.play(
Rotate(cube2, 90 * DEGREES, RIGHT, run_time=2),
FadeInFrom(label2[0], IN),
)
self.play(
Rotate(cube2, 90 * DEGREES, OUT, run_time=2),
FadeInFrom(label2[1], IN),
)
self.wait(5)