Files

481 lines
14 KiB
Python

import numpy as np
import itertools as it
from manimlib.imports import *
from old_projects.brachistochrone.light import PhotonScene
from old_projects.brachistochrone.curves import *
class MultilayeredScene(Scene):
CONFIG = {
"n_layers" : 5,
"top_color" : BLUE_E,
"bottom_color" : BLUE_A,
"total_glass_height" : 5,
"top" : 3*UP,
"RectClass" : Rectangle #FilledRectangle
}
def get_layers(self, n_layers = None):
if n_layers is None:
n_layers = self.n_layers
width = FRAME_WIDTH
height = float(self.total_glass_height)/n_layers
rgb_pair = [
np.array(Color(color).get_rgb())
for color in (self.top_color, self.bottom_color)
]
rgb_range = [
interpolate(*rgb_pair+[x])
for x in np.arange(0, 1, 1./n_layers)
]
tops = [
self.top + x*height*DOWN
for x in range(n_layers)
]
color = Color()
result = []
for top, rgb in zip(tops, rgb_range):
color.set_rgb(rgb)
rect = self.RectClass(
height = height,
width = width,
color = color
)
rect.shift(top-rect.get_top())
result.append(rect)
return result
def add_layers(self):
self.layers = self.get_layers()
self.add(*self.layers)
self.freeze_background()
def get_bottom(self):
return self.top + self.total_glass_height*DOWN
def get_continuous_glass(self):
result = self.RectClass(
width = FRAME_WIDTH,
height = self.total_glass_height,
)
result.sort_points(lambda p : -p[1])
result.set_color_by_gradient(self.top_color, self.bottom_color)
result.shift(self.top-result.get_top())
return result
class TwoToMany(MultilayeredScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
glass = self.get_glass()
layers = self.get_layers()
self.add(glass)
self.wait()
self.play(*[
FadeIn(
layer,
rate_func = squish_rate_func(smooth, x, 1)
)
for layer, x in zip(layers[1:], it.count(0, 0.2))
]+[
Transform(glass, layers[0])
])
self.wait()
def get_glass(self):
return self.RectClass(
height = FRAME_Y_RADIUS,
width = FRAME_WIDTH,
color = BLUE_E
).shift(FRAME_Y_RADIUS*DOWN/2)
class RaceLightInLayers(MultilayeredScene, PhotonScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
self.add_layers()
line = Line(FRAME_X_RADIUS*LEFT, FRAME_X_RADIUS*RIGHT)
lines = [
line.copy().shift(layer.get_center())
for layer in self.layers
]
def rate_maker(x):
return lambda t : min(x*x*t, 1)
min_rate, max_rate = 1., 2.
rates = np.arange(min_rate, max_rate, (max_rate-min_rate)/self.n_layers)
self.play(*[
self.photon_run_along_path(
line,
rate_func = rate_maker(rate),
run_time = 2
)
for line, rate in zip(lines, rates)
])
class ShowDiscretePath(MultilayeredScene, PhotonScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
self.add_layers()
self.cycloid = Cycloid(end_theta = np.pi)
self.generate_discrete_path()
self.play(ShowCreation(self.discrete_path))
self.wait()
self.play(self.photon_run_along_path(
self.discrete_path,
rate_func = rush_into,
run_time = 3
))
self.wait()
def generate_discrete_path(self):
points = self.cycloid.points
tops = [mob.get_top()[1] for mob in self.layers]
tops.append(tops[-1]-self.layers[0].get_height())
indices = [
np.argmin(np.abs(points[:, 1]-top))
for top in tops
]
self.bend_points = points[indices[1:-1]]
self.path_angles = []
self.discrete_path = Mobject1D(
color = WHITE,
density = 3*DEFAULT_POINT_DENSITY_1D
)
for start, end in zip(indices, indices[1:]):
start_point, end_point = points[start], points[end]
self.discrete_path.add_line(
start_point, end_point
)
self.path_angles.append(
angle_of_vector(start_point-end_point)-np.pi/2
)
self.discrete_path.add_line(
points[end], FRAME_X_RADIUS*RIGHT+(tops[-1]-0.5)*UP
)
class NLayers(MultilayeredScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
self.add_layers()
brace = Brace(
Mobject(
Point(self.top),
Point(self.get_bottom())
),
RIGHT
)
n_layers = TextMobject("$n$ layers")
n_layers.next_to(brace)
self.wait()
self.add(brace)
self.show_frame()
self.play(
GrowFromCenter(brace),
GrowFromCenter(n_layers)
)
self.wait()
class ShowLayerVariables(MultilayeredScene, PhotonScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
self.add_layers()
v_equations = []
start_ys = []
end_ys = []
center_paths = []
braces = []
for layer, x in zip(self.layers[:3], it.count(1)):
eq_mob = TexMobject(
["v_%d"%x, "=", "\sqrt{\phantom{y_1}}"],
size = "\\Large"
)
eq_mob.shift(layer.get_center()+2*LEFT)
v_eq = eq_mob.split()
v_eq[0].set_color(layer.get_color())
path = Line(FRAME_X_RADIUS*LEFT, FRAME_X_RADIUS*RIGHT)
path.shift(layer.get_center())
brace_endpoints = Mobject(
Point(self.top),
Point(layer.get_bottom())
)
brace = Brace(brace_endpoints, RIGHT)
brace.shift(x*RIGHT)
start_y = TexMobject("y_%d"%x, size = "\\Large")
end_y = start_y.copy()
start_y.next_to(brace, RIGHT)
end_y.shift(v_eq[-1].get_center())
nudge = 0.2*RIGHT
end_y.shift(nudge)
v_equations.append(v_eq)
start_ys.append(start_y)
end_ys.append(end_y)
center_paths.append(path)
braces.append(brace)
for v_eq, path, time in zip(v_equations, center_paths, [2, 1, 0.5]):
photon_run = self.photon_run_along_path(
path,
rate_func=linear
)
self.play(
FadeToColor(v_eq[0], WHITE),
photon_run,
run_time = time
)
self.wait()
starts = [0, 0.3, 0.6]
self.play(*it.chain(*[
[
GrowFromCenter(
mob,
rate_func=squish_rate_func(smooth, start, 1)
)
for mob, start in zip(mobs, starts)
]
for mobs in (start_ys, braces)
]))
self.wait()
triplets = list(zip(v_equations, start_ys, end_ys))
anims = []
for v_eq, start_y, end_y in triplets:
anims += [
ShowCreation(v_eq[1]),
ShowCreation(v_eq[2]),
Transform(start_y.copy(), end_y)
]
self.play(*anims)
self.wait()
class LimitingProcess(MultilayeredScene):
CONFIG = {
"RectClass" : FilledRectangle
}
def construct(self):
num_iterations = 3
layer_sets = [
self.get_layers((2**x)*self.n_layers)
for x in range(num_iterations)
]
glass_sets = [
Mobject(*[
Mobject(
*layer_sets[x][(2**x)*index:(2**x)*(index+1)]
)
for index in range(self.n_layers)
]).ingest_submobjects()
for x in range(num_iterations)
]
glass_sets.append(self.get_continuous_glass())
for glass_set in glass_sets:
glass_set.sort_points(lambda p : p[1])
curr_set = glass_sets[0]
self.add(curr_set)
for layer_set in glass_sets[1:]:
self.wait()
self.play(Transform(curr_set, layer_set))
self.wait()
class ShowLightAndSlidingObject(MultilayeredScene, TryManyPaths, PhotonScene):
CONFIG = {
"show_time" : False,
"wait_and_add" : False,
"RectClass" : FilledRectangle
}
def construct(self):
glass = self.get_continuous_glass()
self.play(ApplyMethod(glass.fade, 0.8))
self.freeze_background()
paths = self.get_paths()
for path in paths:
if path.get_height() > self.total_glass_height:
path.stretch(0.7, 1)
path.shift(self.top - path.get_top())
path.rgbas[:,2] = 0
loop = paths.pop(1) ##Bad!
randy = Randolph()
randy.scale(RANDY_SCALE_FACTOR)
randy.shift(-randy.get_bottom())
photon_run = self.photon_run_along_path(
loop,
rate_func = lambda t : smooth(1.2*t, 2),
run_time = 4.1
)
text = self.get_text().to_edge(UP, buff = 0.2)
self.play(ShowCreation(loop))
self.wait()
self.play(photon_run)
self.remove(photon_run.mobject)
randy = self.slide(randy, loop)
self.add(randy)
self.wait()
self.remove(randy)
self.play(ShimmerIn(text))
for path in paths:
self.play(Transform(
loop, path,
path_func = path_along_arc(np.pi/2),
run_time = 2
))
class ContinuouslyObeyingSnellsLaw(MultilayeredScene):
CONFIG = {
"arc_radius" : 0.5,
"RectClass" : FilledRectangle
}
def construct(self):
glass = self.get_continuous_glass()
self.add(glass)
self.freeze_background()
cycloid = Cycloid(end_theta = np.pi)
cycloid.set_color(YELLOW)
chopped_cycloid = cycloid.copy()
n = cycloid.get_num_points()
chopped_cycloid.filter_out(lambda p : p[1] > 1 and p[0] < 0)
chopped_cycloid.reverse_points()
self.play(ShowCreation(cycloid))
ref_mob = self.snells_law_at_every_point(cycloid, chopped_cycloid)
self.show_equation(chopped_cycloid, ref_mob)
def snells_law_at_every_point(self, cycloid, chopped_cycloid):
square = Square(side_length = 0.2, color = WHITE)
words = TextMobject(["Snell's law ", "everywhere"])
snells, rest = words.split()
colon = TextMobject(":")
words.next_to(square)
words.shift(0.3*UP)
combo = Mobject(square, words)
combo.get_center = lambda : square.get_center()
new_snells = snells.copy().center().to_edge(UP, buff = 1.5)
colon.next_to(new_snells)
colon.shift(0.05*DOWN)
self.play(MoveAlongPath(
combo, cycloid,
run_time = 5
))
self.play(MoveAlongPath(
combo, chopped_cycloid,
run_time = 4
))
dot = Dot(combo.get_center())
self.play(Transform(square, dot))
self.play(
Transform(snells, new_snells),
Transform(rest, colon)
)
self.wait()
return colon
def get_marks(self, point1, point2):
vert_line = Line(2*DOWN, 2*UP)
tangent_line = vert_line.copy()
theta = TexMobject("\\theta")
theta.scale(0.5)
angle = angle_of_vector(point1 - point2)
tangent_line.rotate(
angle - tangent_line.get_angle()
)
angle_from_vert = angle - np.pi/2
for mob in vert_line, tangent_line:
mob.shift(point1 - mob.get_center())
arc = Arc(angle_from_vert, start_angle = np.pi/2)
arc.scale(self.arc_radius)
arc.shift(point1)
vect_angle = angle_from_vert/2 + np.pi/2
vect = rotate_vector(RIGHT, vect_angle)
theta.center()
theta.shift(point1)
theta.shift(1.5*self.arc_radius*vect)
return arc, theta, vert_line, tangent_line
def show_equation(self, chopped_cycloid, ref_mob):
point2, point1 = chopped_cycloid.points[-2:]
arc, theta, vert_line, tangent_line = self.get_marks(
point1, point2
)
equation = TexMobject([
"\\sin(\\theta)",
"\\over \\sqrt{y}",
])
sin, sqrt_y = equation.split()
equation.next_to(ref_mob)
const = TexMobject(" = \\text{constant}")
const.next_to(equation)
ceil_point = np.array(point1)
ceil_point[1] = self.top[1]
brace = Brace(
Mobject(Point(point1), Point(ceil_point)),
RIGHT
)
y_mob = TexMobject("y").next_to(brace)
self.play(
GrowFromCenter(sin),
ShowCreation(arc),
GrowFromCenter(theta)
)
self.play(ShowCreation(vert_line))
self.play(ShowCreation(tangent_line))
self.wait()
self.play(
GrowFromCenter(sqrt_y),
GrowFromCenter(brace),
GrowFromCenter(y_mob)
)
self.wait()
self.play(Transform(
Point(const.get_left()), const
))
self.wait()