mirror of
https://github.com/3b1b/manim.git
synced 2025-07-30 21:44:19 +08:00
529 lines
16 KiB
Python
529 lines
16 KiB
Python
import numpy as np
|
|
import itertools as it
|
|
|
|
from helpers import *
|
|
|
|
from mobject.tex_mobject import TexMobject, TextMobject, Brace
|
|
from mobject import Mobject, Mobject1D
|
|
from mobject.image_mobject import \
|
|
MobjectFromRegion, ImageMobject, MobjectFromPixelArray
|
|
from topics.three_dimensions import Stars
|
|
|
|
from animation import Animation
|
|
from animation.transform import \
|
|
Transform, CounterclockwiseTransform, ApplyPointwiseFunction,\
|
|
FadeIn, FadeOut, GrowFromCenter, ApplyFunction, ApplyMethod, \
|
|
ShimmerIn
|
|
from animation.simple_animations import \
|
|
ShowCreation, Homotopy, PhaseFlow, ApplyToCenters, DelayByOrder, \
|
|
ShowPassingFlash
|
|
from animation.playground import TurnInsideOut, Vibrate
|
|
from topics.geometry import \
|
|
Line, Circle, Square, Grid, Rectangle, Arrow, Dot, Point, \
|
|
Arc, FilledRectangle
|
|
from topics.characters import Randolph, Mathematician
|
|
from topics.functions import ParametricFunction, FunctionGraph
|
|
from topics.number_line import NumberPlane
|
|
from mobject.region import Region, region_from_polygon_vertices
|
|
from scene import Scene
|
|
|
|
from brachistochrone.curves import Cycloid
|
|
|
|
class Lens(Arc):
|
|
CONFIG = {
|
|
"radius" : 2,
|
|
"angle" : np.pi/2,
|
|
"color" : BLUE_B,
|
|
}
|
|
def __init__(self, **kwargs):
|
|
digest_config(self, kwargs)
|
|
Arc.__init__(self, self.angle, **kwargs)
|
|
|
|
def generate_points(self):
|
|
Arc.generate_points(self)
|
|
self.rotate(-np.pi/4)
|
|
self.shift(-self.get_left())
|
|
self.add_points(self.copy().rotate(np.pi).points)
|
|
|
|
|
|
|
|
class PhotonScene(Scene):
|
|
def wavify(self, mobject):
|
|
result = mobject.copy()
|
|
result.ingest_sub_mobjects()
|
|
tangent_vectors = result.points[1:]-result.points[:-1]
|
|
lengths = np.apply_along_axis(
|
|
np.linalg.norm, 1, tangent_vectors
|
|
)
|
|
thick_lengths = lengths.repeat(3).reshape((len(lengths), 3))
|
|
unit_tangent_vectors = tangent_vectors/thick_lengths
|
|
rot_matrix = np.transpose(rotation_matrix(np.pi/2, OUT))
|
|
normal_vectors = np.dot(unit_tangent_vectors, rot_matrix)
|
|
# total_length = np.sum(lengths)
|
|
times = np.cumsum(lengths)
|
|
nudge_sizes = 0.1*np.sin(2*np.pi*times)
|
|
thick_nudge_sizes = nudge_sizes.repeat(3).reshape((len(nudge_sizes), 3))
|
|
nudges = thick_nudge_sizes*normal_vectors
|
|
result.points[1:] += nudges
|
|
return result
|
|
|
|
|
|
def photon_run_along_path(self, path, color = YELLOW, **kwargs):
|
|
photon = self.wavify(path)
|
|
photon.highlight(color)
|
|
return ShowPassingFlash(photon, **kwargs)
|
|
|
|
|
|
class SimplePhoton(PhotonScene):
|
|
def construct(self):
|
|
text = TextMobject("Light")
|
|
text.to_edge(UP)
|
|
self.play(ShimmerIn(text))
|
|
self.play(self.photon_run_along_path(
|
|
Cycloid(), rate_func = None
|
|
))
|
|
self.dither()
|
|
|
|
|
|
class MultipathPhotonScene(PhotonScene):
|
|
CONFIG = {
|
|
"num_paths" : 5
|
|
}
|
|
def run_along_paths(self):
|
|
paths = self.get_paths()
|
|
colors = Color(YELLOW).range_to(WHITE, len(paths))
|
|
for path, color in zip(paths, colors):
|
|
path.highlight(color)
|
|
photon_runs = [
|
|
self.photon_run_along_path(path)
|
|
for path in paths
|
|
]
|
|
for photon_run, path in zip(photon_runs, paths):
|
|
self.play(
|
|
photon_run,
|
|
ShowCreation(
|
|
path,
|
|
rate_func = lambda t : 0.9*smooth(t)
|
|
)
|
|
)
|
|
self.dither()
|
|
|
|
def generate_paths(self):
|
|
raise Exception("Not Implemented")
|
|
|
|
|
|
class PhotonThroughLens(MultipathPhotonScene):
|
|
def construct(self):
|
|
self.lens = Lens()
|
|
self.add(self.lens)
|
|
self.run_along_paths()
|
|
|
|
|
|
def get_paths(self):
|
|
interval_values = np.arange(self.num_paths).astype('float')
|
|
interval_values /= (self.num_paths-1.)
|
|
first_contact = [
|
|
self.lens.point_from_proportion(0.4*v+0.55)
|
|
for v in reversed(interval_values)
|
|
]
|
|
second_contact = [
|
|
self.lens.point_from_proportion(0.3*v + 0.1)
|
|
for v in interval_values
|
|
]
|
|
focal_point = 2*RIGHT
|
|
return [
|
|
Mobject(
|
|
Line(SPACE_WIDTH*LEFT + fc[1]*UP, fc),
|
|
Line(fc, sc),
|
|
Line(sc, focal_point),
|
|
Line(focal_point, 6*focal_point-5*sc)
|
|
).ingest_sub_mobjects()
|
|
for fc, sc in zip(first_contact, second_contact)
|
|
]
|
|
|
|
|
|
class PhotonOffMirror(MultipathPhotonScene):
|
|
def construct(self):
|
|
self.mirror = Line(*SPACE_HEIGHT*np.array([DOWN, UP]))
|
|
self.mirror.highlight(GREY)
|
|
self.add(self.mirror)
|
|
self.run_along_paths()
|
|
|
|
def get_paths(self):
|
|
interval_values = np.arange(self.num_paths).astype('float')
|
|
interval_values /= (self.num_paths-1)
|
|
anchor_points = [
|
|
self.mirror.point_from_proportion(0.6*v+0.3)
|
|
for v in interval_values
|
|
]
|
|
start_point = 5*LEFT+3*UP
|
|
end_points = []
|
|
for point in anchor_points:
|
|
vect = start_point-point
|
|
vect[1] *= -1
|
|
end_points.append(point+2*vect)
|
|
return [
|
|
Mobject(
|
|
Line(start_point, anchor_point),
|
|
Line(anchor_point, end_point)
|
|
).ingest_sub_mobjects()
|
|
for anchor_point, end_point in zip(anchor_points, end_points)
|
|
]
|
|
|
|
class PhotonsInGlass(MultipathPhotonScene):
|
|
def construct(self):
|
|
glass = Region(lambda x, y : y < 0)
|
|
self.highlight_region(glass, BLUE_E)
|
|
self.run_along_paths()
|
|
|
|
def get_paths(self):
|
|
x, y = -3, 3
|
|
start_point = x*RIGHT + y*UP
|
|
angles = np.arange(np.pi/18, np.pi/3, np.pi/18)
|
|
midpoints = y*np.arctan(angles)
|
|
end_points = midpoints + SPACE_HEIGHT*np.arctan(2*angles)
|
|
return [
|
|
Mobject(
|
|
Line(start_point, [midpoint, 0, 0]),
|
|
Line([midpoint, 0, 0], [end_point, -SPACE_HEIGHT, 0])
|
|
).ingest_sub_mobjects()
|
|
for midpoint, end_point in zip(midpoints, end_points)
|
|
]
|
|
|
|
|
|
class ShowMultiplePathsScene(PhotonScene):
|
|
def construct(self):
|
|
text = TextMobject("Which path minimizes travel time?")
|
|
text.to_edge(UP)
|
|
self.generate_start_and_end_points()
|
|
point_a = Dot(self.start_point)
|
|
point_b = Dot(self.end_point)
|
|
A = TextMobject("A").next_to(point_a, UP)
|
|
B = TextMobject("B").next_to(point_b, DOWN)
|
|
paths = self.get_paths()
|
|
|
|
for point, letter in [(point_a, A), (point_b, B)]:
|
|
self.play(
|
|
ShowCreation(point),
|
|
ShimmerIn(letter)
|
|
)
|
|
self.play(ShimmerIn(text))
|
|
curr_path = paths[0].copy()
|
|
curr_path_copy = curr_path.copy().ingest_sub_mobjects()
|
|
self.play(
|
|
self.photon_run_along_path(curr_path),
|
|
ShowCreation(curr_path_copy, rate_func = rush_into)
|
|
)
|
|
self.remove(curr_path_copy)
|
|
for path in paths[1:] + [paths[0]]:
|
|
self.play(Transform(curr_path, path, run_time = 4))
|
|
self.dither()
|
|
|
|
def generate_start_and_end_points(self):
|
|
raise Exception("Not Implemented")
|
|
|
|
def get_paths(self):
|
|
raise Exception("Not implemented")
|
|
|
|
|
|
class ShowMultiplePathsThroughLens(ShowMultiplePathsScene):
|
|
def construct(self):
|
|
self.lens = Lens()
|
|
self.add(self.lens)
|
|
ShowMultiplePathsScene.construct(self)
|
|
|
|
def generate_start_and_end_points(self):
|
|
self.start_point = 3*LEFT + UP
|
|
self.end_point = 2*RIGHT
|
|
|
|
def get_paths(self):
|
|
alphas = [0.25, 0.4, 0.58, 0.75]
|
|
lower_right, upper_right, upper_left, lower_left = map(
|
|
self.lens.point_from_proportion, alphas
|
|
)
|
|
return [
|
|
Mobject(
|
|
Line(self.start_point, a),
|
|
Line(a, b),
|
|
Line(b, self.end_point)
|
|
).highlight(color)
|
|
for (a, b), color in zip(
|
|
[
|
|
(upper_left, upper_right),
|
|
(upper_left, lower_right),
|
|
(lower_left, lower_right),
|
|
(lower_left, upper_right),
|
|
],
|
|
Color(YELLOW).range_to(WHITE, 4)
|
|
)
|
|
]
|
|
|
|
|
|
class ShowMultiplePathsOffMirror(ShowMultiplePathsScene):
|
|
def construct(self):
|
|
mirror = Line(*SPACE_HEIGHT*np.array([DOWN, UP]))
|
|
mirror.highlight(GREY)
|
|
self.add(mirror)
|
|
ShowMultiplePathsScene.construct(self)
|
|
|
|
def generate_start_and_end_points(self):
|
|
self.start_point = 4*LEFT + 2*UP
|
|
self.end_point = 4*LEFT + 2*DOWN
|
|
|
|
def get_paths(self):
|
|
return [
|
|
Mobject(
|
|
Line(self.start_point, midpoint),
|
|
Line(midpoint, self.end_point)
|
|
).highlight(color)
|
|
for midpoint, color in zip(
|
|
[2*UP, 2*DOWN],
|
|
Color(YELLOW).range_to(WHITE, 2)
|
|
)
|
|
]
|
|
|
|
|
|
class ShowMultiplePathsInGlass(ShowMultiplePathsScene):
|
|
def construct(self):
|
|
glass = Region(lambda x, y : y < 0)
|
|
self.highlight_region(glass, BLUE_E)
|
|
ShowMultiplePathsScene.construct(self)
|
|
|
|
def generate_start_and_end_points(self):
|
|
self.start_point = 3*LEFT + 2*UP
|
|
self.end_point = 3*RIGHT + 2*DOWN
|
|
|
|
def get_paths(self):
|
|
return [
|
|
Mobject(
|
|
Line(self.start_point, midpoint),
|
|
Line(midpoint, self.end_point)
|
|
).highlight(color)
|
|
for midpoint, color in zip(
|
|
[3*LEFT, 3*RIGHT],
|
|
Color(YELLOW).range_to(WHITE, 2)
|
|
)
|
|
]
|
|
|
|
|
|
class MultilayeredGlass(PhotonScene):
|
|
CONFIG = {
|
|
"num_discrete_layers" : 5,
|
|
"num_variables" : 3,
|
|
"top_color" : BLUE_E,
|
|
"bottom_color" : BLUE_A,
|
|
}
|
|
def construct(self):
|
|
self.cycloid = Cycloid(end_theta = np.pi)
|
|
self.top = self.cycloid.get_top()[1]
|
|
self.bottom = self.cycloid.get_bottom()[1]-1
|
|
self.generate_layer_regions()
|
|
self.generate_discrete_path()
|
|
photon_run = self.photon_run_along_path(
|
|
self.augmented_path,
|
|
run_time = 1,
|
|
rate_func = rush_into
|
|
)
|
|
|
|
# self.continuous_to_smooth()
|
|
self.paint_layers()
|
|
self.show_layer_variables()
|
|
self.play(photon_run)
|
|
self.play(ShowCreation(self.discrete_path))
|
|
self.isolate_bend_points()
|
|
# self.dither()
|
|
|
|
def continuous_to_smooth(self):
|
|
continuous = self.get_continuous_background()
|
|
layers = Mobject(*[
|
|
MobjectFromRegion(region, color)
|
|
for region, color in zip(
|
|
self.layer_regions, self.layer_colors
|
|
)
|
|
])
|
|
layers.ingest_sub_mobjects()
|
|
|
|
self.play(FadeIn(continuous))
|
|
self.play(Transform(continuous, layers))
|
|
self.remove(continuous)
|
|
self.paint_layers()
|
|
self.dither()
|
|
|
|
def paint_layers(self):
|
|
# for region, color in zip(self.layer_regions, self.layer_colors):
|
|
# self.highlight_region(region, color)
|
|
for top, color in zip(self.layer_tops, self.layer_colors):
|
|
self.add(Line(
|
|
SPACE_WIDTH*LEFT+top*UP, SPACE_WIDTH*RIGHT+top*UP,
|
|
color = color
|
|
))
|
|
|
|
def get_continuous_background(self):
|
|
glass = MobjectFromRegion(Region(
|
|
lambda x, y : (y < self.top) & (y > self.bottom)
|
|
))
|
|
glass.gradient_highlight(self.top_color, self.bottom_color)
|
|
glass.scale_in_place(0.99)
|
|
return glass
|
|
|
|
def generate_layer_info(self):
|
|
self.layer_thickness = float(self.top-self.bottom)/self.num_discrete_layers
|
|
self.layer_tops = np.arange(
|
|
self.top, self.bottom, -self.layer_thickness
|
|
)
|
|
top_rgb, bottom_rgb = [
|
|
np.array(Color(color).get_rgb())
|
|
for color in self.top_color, self.bottom_color
|
|
]
|
|
epsilon = 1./(self.num_discrete_layers-1)
|
|
self.layer_colors = [
|
|
Color(rgb = interpolate(top_rgb, bottom_rgb, alpha))
|
|
for alpha in np.arange(0, 1+epsilon, epsilon)
|
|
]
|
|
|
|
def generate_layer_regions(self):
|
|
self.generate_layer_info()
|
|
self.layer_regions = [
|
|
Region(lambda x, y : (y < top) & (y > top-self.layer_thickness))
|
|
for top in self.layer_tops
|
|
]
|
|
|
|
def generate_discrete_path(self):
|
|
points = self.cycloid.points
|
|
indices = [
|
|
np.argmin(np.abs(points[:, 1]-top))
|
|
for top in self.layer_tops
|
|
]
|
|
self.bend_points = points[indices[1:-1]]
|
|
self.discrete_path = Mobject1D(color = YELLOW)
|
|
for start, end in zip(indices, indices[1:]):
|
|
self.discrete_path.add_line(
|
|
points[start], points[end]
|
|
)
|
|
self.augmented_path = self.discrete_path.copy()
|
|
self.augmented_path.add_line(
|
|
points[end], SPACE_WIDTH*RIGHT+(self.layer_tops[-1]-1)*UP
|
|
)
|
|
|
|
def show_layer_variables(self):
|
|
layer_top_pairs = zip(
|
|
self.layer_tops[:self.num_variables],
|
|
self.layer_tops[1:]
|
|
)
|
|
v_equations = []
|
|
start_ys = []
|
|
end_ys = []
|
|
center_paths = []
|
|
braces = []
|
|
for (top1, top2), x in zip(layer_top_pairs, it.count(1)):
|
|
eq_mob = TexMobject(
|
|
["v_%d"%x, "=", "\sqrt{\phantom{y_1}}"],
|
|
size = "\\Large"
|
|
)
|
|
midpoint = UP*(top1+top2)/2
|
|
eq_mob.shift(midpoint)
|
|
v_eq = eq_mob.split()
|
|
center_paths.append(Line(
|
|
midpoint+SPACE_WIDTH*LEFT,
|
|
midpoint+SPACE_WIDTH*RIGHT
|
|
))
|
|
brace_endpoints = Mobject(
|
|
Point(self.top*UP+x*RIGHT),
|
|
Point(top2*UP+x*RIGHT)
|
|
)
|
|
brace = Brace(brace_endpoints, RIGHT)
|
|
|
|
start_y = TexMobject("y_%d"%x, size = "\\Large")
|
|
end_y = start_y.copy()
|
|
start_y.next_to(brace, RIGHT)
|
|
end_y.shift(v_eq[-1].get_center())
|
|
end_y.shift(0.2*RIGHT)
|
|
|
|
v_equations.append(v_eq)
|
|
start_ys.append(start_y)
|
|
end_ys.append(end_y)
|
|
braces.append(brace)
|
|
for v_eq, path, time in zip(v_equations, center_paths, [2, 1, 0.5]):
|
|
photon_run = self.photon_run_along_path(
|
|
path,
|
|
rate_func = None
|
|
)
|
|
self.play(
|
|
ShimmerIn(v_eq[0]),
|
|
photon_run,
|
|
run_time = time
|
|
)
|
|
self.dither()
|
|
for start_y, brace in zip(start_ys, braces):
|
|
start_y.highlight(BLACK)
|
|
self.add(start_y)
|
|
self.play(GrowFromCenter(brace))
|
|
self.dither()
|
|
quads = zip(v_equations, start_ys, end_ys, braces)
|
|
self.equations = []
|
|
for v_eq, start_y, end_y, brace in quads:
|
|
self.remove(brace)
|
|
self.play(
|
|
ShowCreation(v_eq[1]),
|
|
ShowCreation(v_eq[2]),
|
|
Transform(start_y, end_y)
|
|
)
|
|
|
|
v_eq.append(start_y)
|
|
self.equations.append(Mobject(*v_eq))
|
|
|
|
def isolate_bend_points(self):
|
|
little_square = Square(side_length = 4, color = WHITE)
|
|
little_square.scale(0.25)
|
|
little_square.shift(self.bend_points[0])
|
|
big_square = little_square.copy()
|
|
big_square.scale(4)
|
|
big_square.to_corner(UP+RIGHT)
|
|
|
|
|
|
first_time = True
|
|
for bend_point in self.bend_points:
|
|
if first_time:
|
|
self.play(ShowCreation(little_square))
|
|
first_time = False
|
|
else:
|
|
self.remove(lines, big_square)
|
|
self.play(ApplyMethod(
|
|
little_square.shift,
|
|
bend_point - little_square.get_center()
|
|
))
|
|
lines = self.lines_connecting_squares(little_square, big_square)
|
|
self.play(
|
|
ShowCreation(lines),
|
|
ShowCreation(big_square)
|
|
)
|
|
self.dither(2)
|
|
|
|
|
|
|
|
def lines_connecting_squares(self, square1, square2):
|
|
return Mobject(*[
|
|
Line(
|
|
square1.get_corner(vect),
|
|
square2.get_corner(vect),
|
|
)
|
|
for vect in [UP+LEFT, DOWN+LEFT]
|
|
]).highlight(square1.get_color())
|
|
|
|
|
|
|
|
|
|
|
|
class MultilayeredGlassZoomIn(Scene):
|
|
def construct(self, layer_number):
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|