Files
manim/manimlib/shaders/inserts/get_xyz_to_uv.glsl
2023-01-18 11:03:22 -08:00

103 lines
3.3 KiB
GLSL

vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
/*
Given three control points for a quadratic bezier,
this returns the two values (x0, x2) such that the
section of the parabola y = x^2 between those values
is isometric to the given quadratic bezier.
Adapated from https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
*/
vec3 dd = 2 * b1 - b0 - b2;
float u0 = dot(b1 - b0, dd);
float u2 = dot(b2 - b1, dd);
float cp = length(cross(b2 - b0, dd));
return vec2(u0 / cp, u2 / cp);
}
mat4 map_triangles(vec3 src0, vec3 src1, vec3 src2, vec3 dst0, vec3 dst1, vec3 dst2){
/*
Return an affine transform which maps the triangle (src0, src1, src2)
onto the triangle (dst0, dst1, dst2)
*/
mat4 src_mat = mat4(
src0, 1.0,
src1, 1.0,
src2, 1.0,
vec4(1.0)
);
mat4 dst_mat = mat4(
dst0, 1.0,
dst1, 1.0,
dst2, 1.0,
vec4(1.0)
);
return dst_mat * inverse(src_mat);
}
mat4 map_onto_x_axis(vec3 src0, vec3 src1){
mat4 shift = mat4(1.0);
shift[3].xyz = -src0;
// Find rotation matrix between unit vectors in each direction
vec3 vect = normalize(src1 - src0);
// This is the same as cross(vect, vec3(1, 0, 0))
vec3 axis = vec3(0.0, vect.z, -vect.y);
float s = length(axis); // Sine of the angle between them
float c = vect.x; // Cosine of the angle between them
// No rotation needed
if(s < 1e-8) return shift;
axis = axis / s; // Axis of rotation
float oc = 1.0 - c;
float ax = axis.x;
float ay = axis.y;
float az = axis.z;
// Rotation matrix about axis, with a given angle corresponding to s and c.
mat4 rotate = mat4(
oc * ax * ax + c, oc * ax * ay + az * s, oc * az * ax - ay * s, 0.0,
oc * ax * ay - az * s, oc * ay * ay + c, oc * ay * az + ax * s, 0.0,
oc * az * ax + ay * s, oc * ay * az - ax * s, oc * az * az + c, 0.0,
0.0, 0.0, 0.0, 1.0
);
return rotate * shift;
}
mat4 get_xyz_to_uv(vec3 b0, vec3 b1, vec3 b2, float temp_is_linear, out float is_linear){
/*
Returns a matrix for an affine transformation which maps a set of quadratic
bezier controls points into a new coordinate system such that the bezier curve
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
*/
is_linear = temp_is_linear;
// Portions of the parabola y = x^2 where abs(x) exceeds
// this value are treated as straight lines.
float thresh = 2.0;
if (!bool(is_linear)){
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
float x0 = xs.x;
float x2 = xs.y;
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
is_linear = 1.0;
}else{
// This triangle on the xy plane should be isometric
// to (b0, b1, b2), and it should define a quadratic
// bezier segment aligned with y = x^2
vec3 dst0 = vec3(x0, x0 * x0, 0.0);
vec3 dst1 = vec3(0.5 * (x0 + x2), x0 * x2, 0.0);
vec3 dst2 = vec3(x2, x2 * x2, 0.0);
return map_triangles(b0, b1, b2, dst0, dst1, dst2);
}
}
// Only lands here if is_linear is 1.0
return map_onto_x_axis(b0, b2);
}