Files

272 lines
8.7 KiB
GLSL

#version 330
layout (triangles) in;
layout (triangle_strip, max_vertices = 5) out;
// Needed for get_gl_Position
uniform vec2 frame_shape;
uniform float focal_distance;
uniform float is_fixed_in_frame;
uniform float anti_alias_width;
uniform float flat_stroke;
//Needed for lighting
uniform vec3 light_source_position;
uniform float joint_type;
uniform float gloss;
uniform float shadow;
in vec3 bp[3];
in vec3 prev_bp[3];
in vec3 next_bp[3];
in vec3 v_global_unit_normal[3];
in vec4 v_color[3];
in float v_stroke_width[3];
out vec4 color;
out float uv_stroke_width;
out float uv_anti_alias_width;
out float has_prev;
out float has_next;
out float bevel_start;
out float bevel_end;
out float angle_from_prev;
out float angle_to_next;
out float bezier_degree;
out vec2 uv_coords;
out vec2 uv_b2;
// Codes for joint types
const float AUTO_JOINT = 0;
const float ROUND_JOINT = 1;
const float BEVEL_JOINT = 2;
const float MITER_JOINT = 3;
const float PI = 3.141592653;
#INSERT quadratic_bezier_geometry_functions.glsl
#INSERT get_gl_Position.glsl
#INSERT get_unit_normal.glsl
#INSERT finalize_color.glsl
void flatten_points(in vec3[3] points, out vec2[3] flat_points){
for(int i = 0; i < 3; i++){
float sf = perspective_scale_factor(points[i].z, focal_distance);
flat_points[i] = sf * points[i].xy;
}
}
float angle_between_vectors(vec2 v1, vec2 v2){
float v1_norm = length(v1);
float v2_norm = length(v2);
if(v1_norm == 0 || v2_norm == 0) return 0;
float dp = dot(v1, v2) / (v1_norm * v2_norm);
float angle = acos(clamp(dp, -1.0, 1.0));
float sn = sign(cross2d(v1, v2));
return sn * angle;
}
bool find_intersection(vec2 p0, vec2 v0, vec2 p1, vec2 v1, out vec2 intersection){
// Find the intersection of a line passing through
// p0 in the direction v0 and one passing through p1 in
// the direction p1.
// That is, find a solutoin to p0 + v0 * t = p1 + v1 * s
float det = -v0.x * v1.y + v1.x * v0.y;
if(det == 0) return false;
float t = cross2d(p0 - p1, v1) / det;
intersection = p0 + v0 * t;
return true;
}
void create_joint(float angle, vec2 unit_tan, float buff,
vec2 static_c0, out vec2 changing_c0,
vec2 static_c1, out vec2 changing_c1){
float shift;
if(abs(angle) < 1e-3){
// No joint
shift = 0;
}else if(joint_type == MITER_JOINT){
shift = buff * (-1.0 - cos(angle)) / sin(angle);
}else{
// For a Bevel joint
shift = buff * (1.0 - cos(angle)) / sin(angle);
}
changing_c0 = static_c0 - shift * unit_tan;
changing_c1 = static_c1 + shift * unit_tan;
}
// This function is responsible for finding the corners of
// a bounding region around the bezier curve, which can be
// emitted as a triangle fan
int get_corners(vec2 controls[3], int degree, float stroke_widths[3], out vec2 corners[5]){
vec2 p0 = controls[0];
vec2 p1 = controls[1];
vec2 p2 = controls[2];
// Unit vectors for directions between control points
vec2 v10 = normalize(p0 - p1);
vec2 v12 = normalize(p2 - p1);
vec2 v01 = -v10;
vec2 v21 = -v12;
vec2 p0_perp = vec2(-v01.y, v01.x); // Pointing to the left of the curve from p0
vec2 p2_perp = vec2(-v12.y, v12.x); // Pointing to the left of the curve from p2
// aaw is the added width given around the polygon for antialiasing.
// In case the normal is faced away from (0, 0, 1), the vector to the
// camera, this is scaled up.
float aaw = anti_alias_width;
float buff0 = 0.5 * stroke_widths[0] + aaw;
float buff2 = 0.5 * stroke_widths[2] + aaw;
float aaw0 = (1 - has_prev) * aaw;
float aaw2 = (1 - has_next) * aaw;
vec2 c0 = p0 - buff0 * p0_perp + aaw0 * v10;
vec2 c1 = p0 + buff0 * p0_perp + aaw0 * v10;
vec2 c2 = p2 + buff2 * p2_perp + aaw2 * v12;
vec2 c3 = p2 - buff2 * p2_perp + aaw2 * v12;
// Account for previous and next control points
if(has_prev > 0) create_joint(angle_from_prev, v01, buff0, c0, c0, c1, c1);
if(has_next > 0) create_joint(angle_to_next, v21, buff2, c3, c3, c2, c2);
// Linear case is the simplest
if(degree == 1){
// The order of corners should be for a triangle_strip. Last entry is a dummy
corners = vec2[5](c0, c1, c3, c2, vec2(0.0));
return 4;
}
// Otherwise, form a pentagon around the curve
float orientation = sign(cross2d(v01, v12)); // Positive for ccw curves
if(orientation > 0) corners = vec2[5](c0, c1, p1, c2, c3);
else corners = vec2[5](c1, c0, p1, c3, c2);
// Replace corner[2] with convex hull point accounting for stroke width
find_intersection(corners[0], v01, corners[4], v21, corners[2]);
return 5;
}
void set_adjascent_info(vec2 c0, vec2 tangent,
int degree,
vec2 adj[3],
out float bevel,
out float angle
){
bool linear_adj = (angle_between_vectors(adj[1] - adj[0], adj[2] - adj[1]) < 1e-3);
angle = angle_between_vectors(c0 - adj[1], tangent);
// Decide on joint type
bool one_linear = (degree == 1 || linear_adj);
bool should_bevel = (
(joint_type == AUTO_JOINT && one_linear) ||
joint_type == BEVEL_JOINT
);
bevel = should_bevel ? 1.0 : 0.0;
}
void find_joint_info(vec2 controls[3], vec2 prev[3], vec2 next[3], int degree){
float tol = 1e-6;
// Made as floats not bools so they can be passed to the frag shader
has_prev = float(distance(prev[2], controls[0]) < tol);
has_next = float(distance(next[0], controls[2]) < tol);
if(bool(has_prev)){
vec2 tangent = controls[1] - controls[0];
set_adjascent_info(
controls[0], tangent, degree, prev,
bevel_start, angle_from_prev
);
}
if(bool(has_next)){
vec2 tangent = controls[1] - controls[2];
set_adjascent_info(
controls[2], tangent, degree, next,
bevel_end, angle_to_next
);
angle_to_next *= -1;
}
}
void main() {
// Convert control points to a standard form if they are linear or null
vec3 controls[3];
vec3 prev[3];
vec3 next[3];
bezier_degree = get_reduced_control_points(vec3[3](bp[0], bp[1], bp[2]), controls);
if(bezier_degree == 0.0) return; // Null curve
int degree = int(bezier_degree);
get_reduced_control_points(vec3[3](prev_bp[0], prev_bp[1], prev_bp[2]), prev);
get_reduced_control_points(vec3[3](next_bp[0], next_bp[1], next_bp[2]), next);
// Adjust stroke width based on distance from the camera
float scaled_strokes[3];
for(int i = 0; i < 3; i++){
float sf = perspective_scale_factor(controls[i].z, focal_distance);
if(bool(flat_stroke)){
vec3 to_cam = normalize(vec3(0.0, 0.0, focal_distance) - controls[i]);
sf *= abs(dot(v_global_unit_normal[i], to_cam));
}
scaled_strokes[i] = v_stroke_width[i] * sf;
}
// Control points are projected to the xy plane before drawing, which in turn
// gets tranlated to a uv plane. The z-coordinate information will be remembered
// by what's sent out to gl_Position, and by how it affects the lighting and stroke width
vec2 flat_controls[3];
vec2 flat_prev[3];
vec2 flat_next[3];
flatten_points(controls, flat_controls);
flatten_points(prev, flat_prev);
flatten_points(next, flat_next);
find_joint_info(flat_controls, flat_prev, flat_next, degree);
// Corners of a bounding region around curve
vec2 corners[5];
int n_corners = get_corners(flat_controls, degree, scaled_strokes, corners);
int index_map[5] = int[5](0, 0, 1, 2, 2);
if(n_corners == 4) index_map[2] = 2;
// Find uv conversion matrix
mat3 xy_to_uv = get_xy_to_uv(flat_controls[0], flat_controls[1]);
float scale_factor = length(flat_controls[1] - flat_controls[0]);
uv_anti_alias_width = anti_alias_width / scale_factor;
uv_b2 = (xy_to_uv * vec3(flat_controls[2], 1.0)).xy;
// Emit each corner
for(int i = 0; i < n_corners; i++){
uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy;
uv_stroke_width = scaled_strokes[index_map[i]] / scale_factor;
// Apply some lighting to the color before sending out.
// vec3 xyz_coords = vec3(corners[i], controls[index_map[i]].z);
vec3 xyz_coords = vec3(corners[i], controls[index_map[i]].z);
color = finalize_color(
v_color[index_map[i]],
xyz_coords,
v_global_unit_normal[index_map[i]],
light_source_position,
gloss,
shadow
);
gl_Position = vec4(
get_gl_Position(vec3(corners[i], 0.0)).xy,
get_gl_Position(controls[index_map[i]]).zw
);
EmitVertex();
}
EndPrimitive();
}