mirror of
https://github.com/3b1b/manim.git
synced 2025-07-27 20:12:24 +08:00
272 lines
8.7 KiB
GLSL
272 lines
8.7 KiB
GLSL
#version 330
|
|
|
|
layout (triangles) in;
|
|
layout (triangle_strip, max_vertices = 5) out;
|
|
|
|
// Needed for get_gl_Position
|
|
uniform vec2 frame_shape;
|
|
uniform float focal_distance;
|
|
uniform float is_fixed_in_frame;
|
|
|
|
uniform float anti_alias_width;
|
|
uniform float flat_stroke;
|
|
|
|
//Needed for lighting
|
|
uniform vec3 light_source_position;
|
|
uniform float joint_type;
|
|
uniform float gloss;
|
|
uniform float shadow;
|
|
|
|
in vec3 bp[3];
|
|
in vec3 prev_bp[3];
|
|
in vec3 next_bp[3];
|
|
in vec3 v_global_unit_normal[3];
|
|
|
|
in vec4 v_color[3];
|
|
in float v_stroke_width[3];
|
|
|
|
out vec4 color;
|
|
out float uv_stroke_width;
|
|
out float uv_anti_alias_width;
|
|
|
|
out float has_prev;
|
|
out float has_next;
|
|
out float bevel_start;
|
|
out float bevel_end;
|
|
out float angle_from_prev;
|
|
out float angle_to_next;
|
|
|
|
out float bezier_degree;
|
|
|
|
out vec2 uv_coords;
|
|
out vec2 uv_b2;
|
|
|
|
// Codes for joint types
|
|
const float AUTO_JOINT = 0;
|
|
const float ROUND_JOINT = 1;
|
|
const float BEVEL_JOINT = 2;
|
|
const float MITER_JOINT = 3;
|
|
const float PI = 3.141592653;
|
|
|
|
|
|
#INSERT quadratic_bezier_geometry_functions.glsl
|
|
#INSERT get_gl_Position.glsl
|
|
#INSERT get_unit_normal.glsl
|
|
#INSERT finalize_color.glsl
|
|
|
|
|
|
void flatten_points(in vec3[3] points, out vec2[3] flat_points){
|
|
for(int i = 0; i < 3; i++){
|
|
float sf = perspective_scale_factor(points[i].z, focal_distance);
|
|
flat_points[i] = sf * points[i].xy;
|
|
}
|
|
}
|
|
|
|
|
|
float angle_between_vectors(vec2 v1, vec2 v2){
|
|
float v1_norm = length(v1);
|
|
float v2_norm = length(v2);
|
|
if(v1_norm == 0 || v2_norm == 0) return 0;
|
|
float dp = dot(v1, v2) / (v1_norm * v2_norm);
|
|
float angle = acos(clamp(dp, -1.0, 1.0));
|
|
float sn = sign(cross2d(v1, v2));
|
|
return sn * angle;
|
|
}
|
|
|
|
|
|
bool find_intersection(vec2 p0, vec2 v0, vec2 p1, vec2 v1, out vec2 intersection){
|
|
// Find the intersection of a line passing through
|
|
// p0 in the direction v0 and one passing through p1 in
|
|
// the direction p1.
|
|
// That is, find a solutoin to p0 + v0 * t = p1 + v1 * s
|
|
float det = -v0.x * v1.y + v1.x * v0.y;
|
|
if(det == 0) return false;
|
|
float t = cross2d(p0 - p1, v1) / det;
|
|
intersection = p0 + v0 * t;
|
|
return true;
|
|
}
|
|
|
|
|
|
void create_joint(float angle, vec2 unit_tan, float buff,
|
|
vec2 static_c0, out vec2 changing_c0,
|
|
vec2 static_c1, out vec2 changing_c1){
|
|
float shift;
|
|
if(abs(angle) < 1e-3){
|
|
// No joint
|
|
shift = 0;
|
|
}else if(joint_type == MITER_JOINT){
|
|
shift = buff * (-1.0 - cos(angle)) / sin(angle);
|
|
}else{
|
|
// For a Bevel joint
|
|
shift = buff * (1.0 - cos(angle)) / sin(angle);
|
|
}
|
|
changing_c0 = static_c0 - shift * unit_tan;
|
|
changing_c1 = static_c1 + shift * unit_tan;
|
|
}
|
|
|
|
|
|
// This function is responsible for finding the corners of
|
|
// a bounding region around the bezier curve, which can be
|
|
// emitted as a triangle fan
|
|
int get_corners(vec2 controls[3], int degree, float stroke_widths[3], out vec2 corners[5]){
|
|
vec2 p0 = controls[0];
|
|
vec2 p1 = controls[1];
|
|
vec2 p2 = controls[2];
|
|
|
|
// Unit vectors for directions between control points
|
|
vec2 v10 = normalize(p0 - p1);
|
|
vec2 v12 = normalize(p2 - p1);
|
|
vec2 v01 = -v10;
|
|
vec2 v21 = -v12;
|
|
|
|
vec2 p0_perp = vec2(-v01.y, v01.x); // Pointing to the left of the curve from p0
|
|
vec2 p2_perp = vec2(-v12.y, v12.x); // Pointing to the left of the curve from p2
|
|
|
|
// aaw is the added width given around the polygon for antialiasing.
|
|
// In case the normal is faced away from (0, 0, 1), the vector to the
|
|
// camera, this is scaled up.
|
|
float aaw = anti_alias_width;
|
|
float buff0 = 0.5 * stroke_widths[0] + aaw;
|
|
float buff2 = 0.5 * stroke_widths[2] + aaw;
|
|
float aaw0 = (1 - has_prev) * aaw;
|
|
float aaw2 = (1 - has_next) * aaw;
|
|
|
|
vec2 c0 = p0 - buff0 * p0_perp + aaw0 * v10;
|
|
vec2 c1 = p0 + buff0 * p0_perp + aaw0 * v10;
|
|
vec2 c2 = p2 + buff2 * p2_perp + aaw2 * v12;
|
|
vec2 c3 = p2 - buff2 * p2_perp + aaw2 * v12;
|
|
|
|
// Account for previous and next control points
|
|
if(has_prev > 0) create_joint(angle_from_prev, v01, buff0, c0, c0, c1, c1);
|
|
if(has_next > 0) create_joint(angle_to_next, v21, buff2, c3, c3, c2, c2);
|
|
|
|
// Linear case is the simplest
|
|
if(degree == 1){
|
|
// The order of corners should be for a triangle_strip. Last entry is a dummy
|
|
corners = vec2[5](c0, c1, c3, c2, vec2(0.0));
|
|
return 4;
|
|
}
|
|
// Otherwise, form a pentagon around the curve
|
|
float orientation = sign(cross2d(v01, v12)); // Positive for ccw curves
|
|
if(orientation > 0) corners = vec2[5](c0, c1, p1, c2, c3);
|
|
else corners = vec2[5](c1, c0, p1, c3, c2);
|
|
// Replace corner[2] with convex hull point accounting for stroke width
|
|
find_intersection(corners[0], v01, corners[4], v21, corners[2]);
|
|
return 5;
|
|
}
|
|
|
|
|
|
void set_adjascent_info(vec2 c0, vec2 tangent,
|
|
int degree,
|
|
vec2 adj[3],
|
|
out float bevel,
|
|
out float angle
|
|
){
|
|
bool linear_adj = (angle_between_vectors(adj[1] - adj[0], adj[2] - adj[1]) < 1e-3);
|
|
angle = angle_between_vectors(c0 - adj[1], tangent);
|
|
// Decide on joint type
|
|
bool one_linear = (degree == 1 || linear_adj);
|
|
bool should_bevel = (
|
|
(joint_type == AUTO_JOINT && one_linear) ||
|
|
joint_type == BEVEL_JOINT
|
|
);
|
|
bevel = should_bevel ? 1.0 : 0.0;
|
|
}
|
|
|
|
|
|
void find_joint_info(vec2 controls[3], vec2 prev[3], vec2 next[3], int degree){
|
|
float tol = 1e-6;
|
|
|
|
// Made as floats not bools so they can be passed to the frag shader
|
|
has_prev = float(distance(prev[2], controls[0]) < tol);
|
|
has_next = float(distance(next[0], controls[2]) < tol);
|
|
|
|
if(bool(has_prev)){
|
|
vec2 tangent = controls[1] - controls[0];
|
|
set_adjascent_info(
|
|
controls[0], tangent, degree, prev,
|
|
bevel_start, angle_from_prev
|
|
);
|
|
}
|
|
if(bool(has_next)){
|
|
vec2 tangent = controls[1] - controls[2];
|
|
set_adjascent_info(
|
|
controls[2], tangent, degree, next,
|
|
bevel_end, angle_to_next
|
|
);
|
|
angle_to_next *= -1;
|
|
}
|
|
}
|
|
|
|
|
|
void main() {
|
|
// Convert control points to a standard form if they are linear or null
|
|
vec3 controls[3];
|
|
vec3 prev[3];
|
|
vec3 next[3];
|
|
bezier_degree = get_reduced_control_points(vec3[3](bp[0], bp[1], bp[2]), controls);
|
|
if(bezier_degree == 0.0) return; // Null curve
|
|
int degree = int(bezier_degree);
|
|
get_reduced_control_points(vec3[3](prev_bp[0], prev_bp[1], prev_bp[2]), prev);
|
|
get_reduced_control_points(vec3[3](next_bp[0], next_bp[1], next_bp[2]), next);
|
|
|
|
|
|
// Adjust stroke width based on distance from the camera
|
|
float scaled_strokes[3];
|
|
for(int i = 0; i < 3; i++){
|
|
float sf = perspective_scale_factor(controls[i].z, focal_distance);
|
|
if(bool(flat_stroke)){
|
|
vec3 to_cam = normalize(vec3(0.0, 0.0, focal_distance) - controls[i]);
|
|
sf *= abs(dot(v_global_unit_normal[i], to_cam));
|
|
}
|
|
scaled_strokes[i] = v_stroke_width[i] * sf;
|
|
}
|
|
|
|
// Control points are projected to the xy plane before drawing, which in turn
|
|
// gets tranlated to a uv plane. The z-coordinate information will be remembered
|
|
// by what's sent out to gl_Position, and by how it affects the lighting and stroke width
|
|
vec2 flat_controls[3];
|
|
vec2 flat_prev[3];
|
|
vec2 flat_next[3];
|
|
flatten_points(controls, flat_controls);
|
|
flatten_points(prev, flat_prev);
|
|
flatten_points(next, flat_next);
|
|
|
|
find_joint_info(flat_controls, flat_prev, flat_next, degree);
|
|
|
|
// Corners of a bounding region around curve
|
|
vec2 corners[5];
|
|
int n_corners = get_corners(flat_controls, degree, scaled_strokes, corners);
|
|
|
|
int index_map[5] = int[5](0, 0, 1, 2, 2);
|
|
if(n_corners == 4) index_map[2] = 2;
|
|
|
|
// Find uv conversion matrix
|
|
mat3 xy_to_uv = get_xy_to_uv(flat_controls[0], flat_controls[1]);
|
|
float scale_factor = length(flat_controls[1] - flat_controls[0]);
|
|
uv_anti_alias_width = anti_alias_width / scale_factor;
|
|
uv_b2 = (xy_to_uv * vec3(flat_controls[2], 1.0)).xy;
|
|
|
|
// Emit each corner
|
|
for(int i = 0; i < n_corners; i++){
|
|
uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy;
|
|
uv_stroke_width = scaled_strokes[index_map[i]] / scale_factor;
|
|
// Apply some lighting to the color before sending out.
|
|
// vec3 xyz_coords = vec3(corners[i], controls[index_map[i]].z);
|
|
vec3 xyz_coords = vec3(corners[i], controls[index_map[i]].z);
|
|
color = finalize_color(
|
|
v_color[index_map[i]],
|
|
xyz_coords,
|
|
v_global_unit_normal[index_map[i]],
|
|
light_source_position,
|
|
gloss,
|
|
shadow
|
|
);
|
|
gl_Position = vec4(
|
|
get_gl_Position(vec3(corners[i], 0.0)).xy,
|
|
get_gl_Position(controls[index_map[i]]).zw
|
|
);
|
|
EmitVertex();
|
|
}
|
|
EndPrimitive();
|
|
} |