Files
manim/utils/space_ops.py
2018-08-29 00:09:57 -07:00

182 lines
4.3 KiB
Python

import numpy as np
from constants import OUT
from constants import RIGHT
from constants import PI
from constants import TAU
from functools import reduce
from utils.iterables import adjacent_pairs
# Matrix operations
def get_norm(vect):
return sum([x**2 for x in vect])**0.5
def thick_diagonal(dim, thickness=2):
row_indices = np.arange(dim).repeat(dim).reshape((dim, dim))
col_indices = np.transpose(row_indices)
return (np.abs(row_indices - col_indices) < thickness).astype('uint8')
def rotation_matrix(angle, axis):
"""
Rotation in R^3 about a specified axis of rotation.
"""
about_z = rotation_about_z(angle)
z_to_axis = z_to_vector(axis)
axis_to_z = np.linalg.inv(z_to_axis)
return reduce(np.dot, [z_to_axis, about_z, axis_to_z])
def rotation_about_z(angle):
return [
[np.cos(angle), -np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1]
]
def z_to_vector(vector):
"""
Returns some matrix in SO(3) which takes the z-axis to the
(normalized) vector provided as an argument
"""
norm = get_norm(vector)
if norm == 0:
return np.identity(3)
v = np.array(vector) / norm
phi = np.arccos(v[2])
if any(v[:2]):
# projection of vector to unit circle
axis_proj = v[:2] / get_norm(v[:2])
theta = np.arccos(axis_proj[0])
if axis_proj[1] < 0:
theta = -theta
else:
theta = 0
phi_down = np.array([
[np.cos(phi), 0, np.sin(phi)],
[0, 1, 0],
[-np.sin(phi), 0, np.cos(phi)]
])
return np.dot(rotation_about_z(theta), phi_down)
def rotate_vector(vector, angle, axis=OUT):
return np.dot(rotation_matrix(angle, axis), vector)
def angle_between(v1, v2):
return np.arccos(np.dot(
v1 / get_norm(v1),
v2 / get_norm(v2)
))
def angle_of_vector(vector):
"""
Returns polar coordinate theta when vector is project on xy plane
"""
z = complex(*vector[:2])
if z == 0:
return 0
return np.angle(complex(*vector[:2]))
def angle_between_vectors(v1, v2):
"""
Returns the angle between two 3D vectors.
This angle will always be btw 0 and TAU/2.
"""
l1 = get_norm(v1)
l2 = get_norm(v2)
return np.arccos(np.dot(v1, v2) / (l1 * l2))
def project_along_vector(point, vector):
matrix = np.identity(3) - np.outer(vector, vector)
return np.dot(point, matrix.T)
def normalize(vect, fall_back=None):
norm = get_norm(vect)
if norm > 0:
return vect / norm
else:
if fall_back is not None:
return fall_back
else:
return np.zeros(len(vect))
def cross(v1, v2):
return np.array([
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]
])
def get_unit_normal(v1, v2):
return normalize(cross(v1, v2))
###
def compass_directions(n=4, start_vect=RIGHT):
angle = 2 * np.pi / n
return np.array([
rotate_vector(start_vect, k * angle)
for k in range(n)
])
def complex_to_R3(complex_num):
return np.array((complex_num.real, complex_num.imag, 0))
def R3_to_complex(point):
return complex(*point[:2])
def complex_func_to_R3_func(complex_func):
return lambda p: complex_to_R3(complex_func(R3_to_complex(p)))
def center_of_mass(points):
points = [np.array(point).astype("float") for point in points]
return sum(points) / len(points)
def line_intersection(line1, line2):
"""
return intersection point of two lines,
each defined with a pair of vectors determining
the end points
"""
x_diff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])
y_diff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])
def det(a, b):
return a[0] * b[1] - a[1] * b[0]
div = det(x_diff, y_diff)
if div == 0:
raise Exception("Lines do not intersect")
d = (det(*line1), det(*line2))
x = det(d, x_diff) / div
y = det(d, y_diff) / div
return np.array([x, y, 0])
def get_winding_number(points):
total_angle = 0
for p1, p2 in adjacent_pairs(points):
d_angle = angle_of_vector(p2) - angle_of_vector(p1)
d_angle = ((d_angle + PI) % TAU) - PI
total_angle += d_angle
return total_angle / TAU