Files
manim/eoc/chapter8.py
2017-04-14 16:15:39 -07:00

2733 lines
83 KiB
Python

from helpers import *
import scipy
from mobject.tex_mobject import TexMobject
from mobject import Mobject
from mobject.image_mobject import ImageMobject
from mobject.vectorized_mobject import *
from animation.animation import Animation
from animation.transform import *
from animation.simple_animations import *
from animation.playground import *
from topics.geometry import *
from topics.characters import *
from topics.functions import *
from topics.fractals import *
from topics.number_line import *
from topics.combinatorics import *
from topics.numerals import *
from topics.three_dimensions import *
from topics.objects import *
from scene import Scene
from scene.zoomed_scene import ZoomedScene
from scene.reconfigurable_scene import ReconfigurableScene
from camera import Camera
from mobject.svg_mobject import *
from mobject.tex_mobject import *
from eoc.graph_scene import GraphScene
from eoc.chapter2 import Car, MoveCar, ShowSpeedometer, \
IncrementNumber, GraphCarTrajectory, SecantLineToTangentLine, \
VELOCITY_COLOR, TIME_COLOR, DISTANCE_COLOR
from topics.common_scenes import OpeningQuote, PatreonThanks
def v_rate_func(t):
return 4*t - 4*(t**2)
def s_rate_func(t):
return 3*(t**2) - 2*(t**3)
def v_func(t):
return t*(8-t)
def s_func(t):
return 4*t**2 - (t**3)/3.
class Chapter8OpeningQuote(OpeningQuote, PiCreatureScene):
CONFIG = {
"quote" : [
" One should never try to prove anything that \\\\ is not ",
"almost obvious", ". "
],
"quote_arg_separator" : "",
"highlighted_quote_terms" : {
"almost obvious" : BLUE,
},
"author" : "Alexander Grothendieck"
}
def construct(self):
self.remove(self.pi_creature)
OpeningQuote.construct(self)
words_copy = self.quote.get_part_by_tex("obvious").copy()
author = self.author
author.save_state()
formula = self.get_formula()
formula.next_to(author, DOWN, MED_LARGE_BUFF)
formula.to_edge(LEFT)
self.revert_to_original_skipping_status()
self.play(FadeIn(self.pi_creature))
self.play(
author.next_to, self.pi_creature.get_corner(UP+LEFT), UP,
self.pi_creature.change_mode, "raise_right_hand"
)
self.dither(3)
self.play(
author.restore,
self.pi_creature.change_mode, "plain"
)
self.play(
words_copy.next_to, self.pi_creature,
LEFT, MED_SMALL_BUFF, UP,
self.pi_creature.change_mode, "thinking"
)
self.dither(2)
self.play(
Write(formula),
self.pi_creature.change_mode, "confused"
)
self.dither()
def get_formula(self):
result = TexMobject(
"{d(\\sin(\\theta)) \\over \\,", "d\\theta}", "=",
"\\lim_{", "h", " \\to 0}",
"{\\sin(\\theta+", "h", ") - \\sin(\\theta) \\over", " h}", "=",
"\\lim_{", "h", " \\to 0}",
"{\\big[ \\sin(\\theta)\\cos(", "h", ") + ",
"\\sin(", "h", ")\\cos(\\theta)\\big] - \\sin(\\theta) \\over", "h}",
"= \\dots"
)
result.highlight_by_tex("h", GREEN, substring = False)
result.highlight_by_tex("d\\theta", GREEN)
result.scale_to_fit_width(2*SPACE_WIDTH - 2*MED_SMALL_BUFF)
return result
class ThisVideo(TeacherStudentsScene):
def construct(self):
series = VideoSeries()
series.to_edge(UP)
this_video = series[7]
this_video.save_state()
next_video = series[8]
deriv, integral, v_t, dt, equals, v_T = formula = TexMobject(
"\\frac{d}{dT}",
"\\int_0^T", "v(t)", "\\,dt",
"=", "v(T)"
)
formula.highlight_by_tex("v", VELOCITY_COLOR)
formula.next_to(self.teacher.get_corner(UP+LEFT), UP, MED_LARGE_BUFF)
self.play(FadeIn(series, submobject_mode = "lagged_start"))
self.play(
this_video.shift, this_video.get_height()*DOWN/2,
this_video.highlight, YELLOW,
self.teacher.change_mode, "raise_right_hand",
)
self.play(Write(VGroup(integral, v_t, dt)))
self.change_student_modes(*["erm"]*3)
self.dither()
self.play(Write(VGroup(deriv, equals, v_T)), )
self.change_student_modes(*["confused"]*3)
self.dither(3)
self.play(
this_video.restore,
next_video.shift, next_video.get_height()*DOWN/2,
next_video.highlight, YELLOW,
integral[0].copy().next_to, next_video, DOWN, MED_LARGE_BUFF,
FadeOut(formula),
*it.chain(*[
[pi.change_mode, "plain", pi.look_at, next_video]
for pi in self.pi_creatures
])
)
self.dither(2)
class InCarRestrictedView(ShowSpeedometer):
CONFIG = {
"speedometer_title_text" : "Your view",
}
def construct(self):
car = Car()
car.move_to(self.point_A)
self.car = car
car.randy.save_state()
Transform(car.randy, Randolph()).update(1)
car.randy.next_to(car, RIGHT, MED_LARGE_BUFF)
car.randy.look_at(car)
window = car[1][6].copy()
window.is_subpath = False
window.set_fill(BLACK, opacity = 0.75)
window.set_stroke(width = 0)
square = Square(stroke_color = WHITE)
square.replace(VGroup(self.speedometer, self.speedometer_title))
square.scale_in_place(1.5)
square.pointwise_become_partial(square, 0.25, 0.75)
time_label = TextMobject("Time (in seconds):", "0")
time_label.shift(2*UP)
dots = VGroup(*map(Dot, [self.point_A, self.point_B]))
line = Line(*dots, buff = 0)
line.highlight(DISTANCE_COLOR)
brace = Brace(line, DOWN)
brace_text = brace.get_text("Distance traveled?")
#Sit in car
self.add(car)
self.play(Blink(car.randy))
self.play(car.randy.restore, Animation(car))
self.play(ShowCreation(window, run_time = 2))
self.dither()
#Show speedometer
self.introduce_added_mobjects()
self.play(ShowCreation(square))
self.dither()
#Travel
self.play(FadeIn(time_label))
self.play(
MoveCar(car, self.point_B, rate_func = s_rate_func),
IncrementNumber(time_label[1], run_time = 8),
MaintainPositionRelativeTo(window, car),
*self.get_added_movement_anims(
rate_func = v_rate_func,
radians = -(16.0/70)*4*np.pi/3
),
run_time = 8
)
eight = TexMobject("8").move_to(time_label[1])
self.play(Transform(
time_label[1], eight,
rate_func = squish_rate_func(smooth, 0, 0.5)
))
self.dither()
#Ask about distance
self.play(*map(ShowCreation, dots))
self.play(ShowCreation(line))
self.play(
GrowFromCenter(brace),
Write(brace_text)
)
self.dither(2)
class GraphDistanceVsTime(GraphCarTrajectory):
CONFIG = {
"y_min" : 0,
"y_max" : 100,
"y_axis_height" : 6,
"y_tick_frequency" : 10,
"y_labeled_nums" : range(10, 100, 10),
"y_axis_label" : "Distance (in meters)",
"x_min" : -1,
"x_max" : 9,
"x_axis_width" : 9,
"x_tick_frequency" : 1,
"x_leftmost_tick" : None, #Change if different from x_min
"x_labeled_nums" : range(1, 9),
"x_axis_label" : "$t$",
"time_of_journey" : 8,
"care_movement_rate_func" : s_rate_func,
"num_graph_anchor_points" : 100
}
def construct(self):
self.setup_axes()
graph = self.get_graph(
s_func,
color = DISTANCE_COLOR,
x_min = 0,
x_max = 8,
)
origin = self.coords_to_point(0, 0)
graph_label = self.get_graph_label(
graph, "s(t)", color = DISTANCE_COLOR
)
self.introduce_graph(graph, origin)
class PlotVelocity(GraphScene):
CONFIG = {
"x_min" : -1,
"x_max" : 9,
"x_axis_width" : 9,
"x_tick_frequency" : 1,
"x_labeled_nums" : range(1, 9),
"x_axis_label" : "$t$",
"y_min" : 0,
"y_max" : 25,
"y_axis_height" : 6,
"y_tick_frequency" : 5,
"y_labeled_nums" : range(5, 30, 5),
"y_axis_label" : "Velocity in $\\frac{\\text{meters}}{\\text{second}}$",
}
def construct(self):
self.setup_axes()
self.add_speedometer()
self.plot_points()
self.draw_curve()
def add_speedometer(self):
speedometer = Speedometer()
speedometer.next_to(self.y_axis_label_mob, RIGHT, LARGE_BUFF)
speedometer.to_edge(UP)
self.play(DrawBorderThenFill(
speedometer,
submobject_mode = "lagged_start",
rate_func = None,
))
self.speedometer = speedometer
def plot_points(self):
times = range(0, 9)
points = [
self.coords_to_point(t, v_func(t))
for t in times
]
dots = VGroup(*[Dot(p, radius = 0.07) for p in points])
dots.highlight(VELOCITY_COLOR)
pre_dots = VGroup()
dot_intro_anims = []
for time, dot in zip(times, dots):
pre_dot = dot.copy()
self.speedometer.move_needle_to_velocity(v_func(time))
pre_dot.move_to(self.speedometer.get_needle_tip())
pre_dot.set_fill(opacity = 0)
pre_dots.add(pre_dot)
dot_intro_anims += [
ApplyMethod(
pre_dot.set_fill, YELLOW, 1,
run_time = 0.1,
),
ReplacementTransform(
pre_dot, dot,
run_time = 0.9,
)
]
self.speedometer.move_needle_to_velocity(0)
self.play(
Succession(
*dot_intro_anims, rate_func = None
),
ApplyMethod(
self.speedometer.move_needle_to_velocity,
v_func(4),
rate_func = squish_rate_func(
lambda t : 1-v_rate_func(t),
0, 0.95,
)
),
run_time = 5
)
self.dither()
def draw_curve(self):
graph, label = self.get_v_graph_and_label()
self.revert_to_original_skipping_status()
self.play(ShowCreation(graph, run_time = 3))
self.play(Write(graph_label))
self.dither()
##
def get_v_graph_and_label(self):
graph = self.get_graph(
v_func,
x_min = 0,
x_max = 8,
color = VELOCITY_COLOR
)
graph_label = TexMobject("v(t)", "=t(8-t)")
graph_label.highlight_by_tex("v(t)", VELOCITY_COLOR)
graph_label.next_to(
graph.point_from_proportion(7./8.),
UP+RIGHT
)
self.v_graph = graph
self.v_graph_label = graph_label
return graph, graph_label
class Chapter2Wrapper(Scene):
CONFIG = {
"title" : "Chapter 2: The paradox of the derivative",
}
def construct(self):
title = TextMobject(self.title)
title.to_edge(UP)
rect = Rectangle(width = 16, height = 9, color = WHITE)
rect.scale_to_fit_height(1.5*SPACE_HEIGHT)
rect.next_to(title, DOWN)
self.add(title)
self.play(ShowCreation(rect))
self.dither(3)
class GivenDistanceWhatIsVelocity(GraphCarTrajectory):
def construct(self):
self.force_skipping()
self.setup_axes()
graph = self.graph_sigmoid_trajectory_function()
origin = self.coords_to_point(0, 0)
self.introduce_graph(graph, origin)
self.comment_on_slope(graph, origin)
self.revert_to_original_skipping_status()
self.show_velocity_graph()
class DerivativeOfDistance(SecantLineToTangentLine):
def construct(self):
self.setup_axes()
self.remove(self.y_axis_label_mob, self.x_axis_label_mob)
self.add_derivative_definition(self.y_axis_label_mob)
self.add_graph()
self.draw_axes()
self.show_tangent_line()
class AskAboutAntiderivative(PlotVelocity):
def construct(self):
self.setup_axes()
self.add_v_graph()
self.write_s_formula()
self.write_antiderivative()
def add_v_graph(self):
graph, label = self.get_v_graph_and_label()
self.play(ShowCreation(graph))
self.play(Write(label))
self.graph = graph
self.graph_label = label
def write_s_formula(self):
ds_dt = TexMobject("ds", "\\over\\,", "dt")
ds_dt.highlight_by_tex("ds", DISTANCE_COLOR)
ds_dt.highlight_by_tex("dt", TIME_COLOR)
ds_dt.next_to(self.graph_label, UP, LARGE_BUFF)
v_t = self.graph_label.get_part_by_tex("v(t)")
arrow = Arrow(
ds_dt.get_bottom(), v_t.get_top(),
color = WHITE,
)
self.play(
Write(ds_dt, run_time = 2),
ShowCreation(arrow)
)
self.dither()
def write_antiderivative(self):
randy = Randolph()
randy.to_corner(DOWN+LEFT)
randy.shift(2*RIGHT)
words = TexMobject(
"{d(", "???", ") \\over \\,", "dt}", "=", "t(8-t)"
)
words.highlight_by_tex("t(8-t)", VELOCITY_COLOR)
words.highlight_by_tex("???", DISTANCE_COLOR)
words.highlight_by_tex("dt", TIME_COLOR)
words.scale(0.7)
self.play(FadeIn(randy))
self.play(PiCreatureSays(
randy, words,
target_mode = "confused",
bubble_kwargs = {"height" : 3, "width" : 4},
))
self.play(Blink(randy))
self.dither()
class Antiderivative(PiCreatureScene):
def construct(self):
functions = self.get_functions("t^2", "2t")
alt_functions = self.get_functions("???", "t(8-t)")
top_arc, bottom_arc = arcs = self.get_arcs(functions)
derivative, antiderivative = self.get_arc_labels(arcs)
group = VGroup(functions, arcs, derivative, antiderivative)
self.add(functions, top_arc, derivative)
self.dither()
self.play(
ShowCreation(bottom_arc),
Write(antiderivative),
self.pi_creature.change_mode, "raise_right_hand"
)
self.dither(2)
for pair in reversed(zip(functions, alt_functions)):
self.play(
Transform(*pair),
self.pi_creature.change_mode, "pondering"
)
self.dither(2)
self.pi_creature_says(
"But first!",
target_mode = "surprised",
look_at_arg = 50*OUT,
added_anims = [group.to_edge, LEFT],
run_time = 1,
)
self.dither()
def get_functions(self, left_tex, right_tex):
left = TexMobject(left_tex)
left.shift(2*LEFT)
left.highlight(DISTANCE_COLOR)
right = TexMobject(right_tex)
right.shift(2*RIGHT)
right.highlight(VELOCITY_COLOR)
result = VGroup(left, right)
result.shift(UP)
return result
def get_arcs(self, functions):
f1, f2 = functions
top_line = Line(f1.get_corner(UP+RIGHT), f2.get_corner(UP+LEFT))
bottom_line = Line(f1.get_corner(DOWN+RIGHT), f2.get_corner(DOWN+LEFT))
top_arc = Arc(start_angle = 5*np.pi/6, angle = -2*np.pi/3)
bottom_arc = top_arc.copy()
bottom_arc.rotate(np.pi)
arcs = VGroup(top_arc, bottom_arc)
arcs.scale_to_fit_width(top_line.get_width())
for arc in arcs:
arc.add_tip()
top_arc.next_to(top_line, UP)
bottom_arc.next_to(bottom_line, DOWN)
bottom_arc.highlight(MAROON_B)
return arcs
def get_arc_labels(self, arcs):
top_arc, bottom_arc = arcs
derivative = TextMobject("Derivative")
derivative.next_to(top_arc, UP)
antiderivative = TextMobject("``Antiderivative''")
antiderivative.next_to(bottom_arc, DOWN)
antiderivative.highlight(bottom_arc.get_color())
return VGroup(derivative, antiderivative)
class AreaUnderVGraph(PlotVelocity):
def construct(self):
self.setup_axes()
self.add(*self.get_v_graph_and_label())
self.show_rects()
def show_rects(self):
rect_list = self.get_riemann_rectangles_list(
self.v_graph, 7,
max_dx = 1.0,
x_min = 0,
x_max = 8,
)
flat_graph = self.get_graph(lambda t : 0)
rects = self.get_riemann_rectangles(
flat_graph, x_min = 0, x_max = 8, dx = 1.0
)
for new_rects in rect_list:
new_rects.set_fill(opacity = 0.8)
rects.align_submobjects(new_rects)
for alt_rect in rects[::2]:
alt_rect.set_fill(opacity = 0)
self.play(Transform(
rects, new_rects,
run_time = 2,
submobject_mode = "lagged_start"
))
self.dither()
class ConstantVelocityCar(Scene):
def construct(self):
car = Car()
car.move_to(5*LEFT + 3*DOWN)
self.add(car)
self.dither()
self.play(MoveCar(
car, 7*RIGHT+3*DOWN,
run_time = 5,
rate_func = None,
))
self.dither()
class ConstantVelocityPlot(PlotVelocity):
CONFIG = {
"x_axis_label" : "Time"
}
def construct(self):
self.setup_axes()
self.x_axis_label_mob.shift(DOWN)
self.draw_graph()
self.show_product()
self.comment_on_area_wierdness()
self.note_units()
def draw_graph(self):
graph = self.get_graph(
lambda t : 10,
x_min = 0,
x_max = 8,
color = VELOCITY_COLOR
)
self.play(ShowCreation(graph, rate_func = None, run_time = 3))
self.dither()
self.graph = graph
def show_product(self):
rect = Rectangle(
stroke_width = 0,
fill_color = DISTANCE_COLOR,
fill_opacity = 0.5
)
rect.replace(
VGroup(self.graph, VectorizedPoint(self.graph_origin)),
stretch = True
)
right_brace = Brace(rect, RIGHT)
top_brace = Brace(rect, UP)
v_label = right_brace.get_text(
"$10 \\frac{\\text{meters}}{\\text{second}}$",
)
v_label.highlight(VELOCITY_COLOR)
t_label = top_brace.get_text(
"8 seconds"
)
t_label.highlight(TIME_COLOR)
s_label = TexMobject("10", "\\times", "8", "\\text{ meters}")
s_label.highlight_by_tex("10", VELOCITY_COLOR)
s_label.highlight_by_tex("8", TIME_COLOR)
s_label.move_to(rect)
self.play(
GrowFromCenter(right_brace),
Write(v_label),
)
self.play(
GrowFromCenter(top_brace),
Write(t_label),
)
self.play(
FadeIn(rect),
Write(s_label),
Animation(self.graph)
)
self.dither(2)
self.area_rect = rect
self.s_label = s_label
def comment_on_area_wierdness(self):
randy = Randolph()
randy.to_corner(DOWN+LEFT)
bubble = randy.get_bubble(
"Distance \\\\ is area?",
bubble_class = ThoughtBubble,
height = 3,
width = 4,
fill_opacity = 1,
)
bubble.content.scale_in_place(0.8)
bubble.content.shift(SMALL_BUFF*UP)
VGroup(bubble[-1], bubble.content).shift(1.5*LEFT)
self.play(FadeIn(randy))
self.play(randy.change_mode, "pondering")
self.play(
self.area_rect.highlight, YELLOW,
*map(Animation, self.get_mobjects()),
rate_func = there_and_back
)
self.play(Blink(randy))
self.play(
randy.change_mode, "confused",
randy.look_at, randy.bubble,
ShowCreation(bubble),
Write(bubble.content),
)
self.dither()
self.play(Blink(randy))
self.dither()
self.play(
randy.change_mode, "pondering",
FadeOut(bubble),
FadeOut(bubble.content),
)
self.randy = randy
def note_units(self):
x_line, y_line = lines = VGroup(*[
axis.main_line.copy()
for axis in self.x_axis, self.y_axis
])
lines.highlight(TIME_COLOR)
square = Square(
stroke_color = BLACK,
stroke_width = 1,
fill_color = PINK,
fill_opacity = 1,
)
square.replace(
VGroup(*[
VectorizedPoint(self.coords_to_point(i, i))
for i in 0, 1
]),
stretch = True
)
units_of_area = VGroup(*[
square.copy().move_to(
self.coords_to_point(x, y),
DOWN+LEFT
)
for x in range(8)
for y in range(10)
])
self.play(ShowCreation(x_line))
self.play(Indicate(self.x_axis_label_mob))
self.play(FadeOut(x_line))
self.play(
ShowCreation(y_line),
self.randy.look_at, self.y_axis_label_mob
)
self.play(Indicate(self.y_axis_label_mob))
self.play(FadeOut(y_line))
for FadeClass in FadeIn, FadeOut:
self.play(
FadeClass(
units_of_area,
submobject_mode = "lagged_start",
run_time = 3
),
Animation(self.s_label),
self.randy.look_at, self.area_rect
)
self.play(Blink(self.randy))
self.dither()
class PiecewiseConstantCar(Scene):
def construct(self):
car = Car()
start_point = 5*LEFT
car.move_to(start_point)
self.add(car)
self.dither()
for shift in 2, 6, 12:
car.randy.rotate_in_place(np.pi/8)
anim = MoveCar(
car, start_point+shift*RIGHT,
rate_func = None
)
anim.target_mobject[0].rotate_in_place(-np.pi/8)
# for mob in anim.starting_mobject, anim.mobject:
# mob.randy.rotate_in_place(np.pi/6)
self.play(anim)
self.dither()
class PiecewiseConstantPlot(PlotVelocity):
CONFIG = {
"y_axis_label" : "",
"min_graph_proportion" : 0.1,
"max_graph_proportion" : 0.8,
"num_riemann_approximations" : 7, ##TODO
"riemann_rect_fill_opacity" : 0.75,
"tick_size" : 0.2,
}
def construct(self):
self.setup_graph()
self.always_changing()
self.show_piecewise_constant_graph()
self.compute_distance_on_each_interval()
self.approximate_original_curve()
self.revert_to_specific_approximation()
self.show_specific_rectangle()
self.show_v_dt_for_all_rectangles()
self.write_integral_symbol()
self.roles_of_dt()
self.what_does_sum_approach()
self.label_integral()
def setup_graph(self):
self.setup_axes()
self.add(*self.get_v_graph_and_label())
def always_changing(self):
dot = Dot()
arrow = Arrow(LEFT, RIGHT)
words = TextMobject("Always changing")
group = VGroup(dot, arrow, words)
def update_group(group, alpha):
dot, arrow, words = group
prop = interpolate(
self.min_graph_proportion,
self.max_graph_proportion,
alpha
)
graph_point = self.v_graph.point_from_proportion(prop)
dot.move_to(graph_point)
x_val = self.x_axis.point_to_number(graph_point)
angle = self.angle_of_tangent(x_val, self.v_graph)
angle += np.pi/2
vect = rotate_vector(RIGHT, angle)
arrow.rotate(angle - arrow.get_angle() + np.pi)
arrow.shift(
graph_point + MED_SMALL_BUFF*vect - arrow.get_end()
)
words.next_to(arrow.get_start(), UP)
return group
update_group(group, 0)
self.play(
Write(words),
ShowCreation(arrow),
DrawBorderThenFill(dot),
run_time = 1
)
self.play(UpdateFromAlphaFunc(
group, update_group,
rate_func = there_and_back,
run_time = 5
))
self.dither()
self.play(FadeOut(group))
def show_piecewise_constant_graph(self):
pw_constant_graph = self.get_pw_constant_graph()
alt_lines = [
line.copy().highlight(YELLOW)
for line in pw_constant_graph[:4]
]
for line in alt_lines:
line.start_dot = Dot(line.get_start())
line.end_dot = Dot(line.get_end())
VGroup(line.start_dot, line.end_dot).highlight(line.get_color())
line = alt_lines[0]
faders = [self.v_graph, self.v_graph_label]
for mob in faders:
mob.save_state()
mob.generate_target()
mob.target.fade(0.7)
self.play(*map(MoveToTarget, faders))
self.play(ShowCreation(pw_constant_graph, run_time = 2))
self.dither()
self.play(ShowCreation(line))
self.dither()
for new_line in alt_lines[1:]:
for mob in line.end_dot, new_line.start_dot, new_line:
self.play(Transform(
line, mob,
run_time = 1./3
))
self.remove(line)
self.add(new_line)
self.dither(2)
line = new_line
self.play(FadeOut(line))
self.pw_constant_graph = pw_constant_graph
def compute_distance_on_each_interval(self):
rect_list = self.get_riemann_rectangles_list(
self.v_graph, self.num_riemann_approximations,
max_dx = 1,
x_min = 0,
x_max = 8,
)
for rects in rect_list:
rects.set_fill(opacity = self.riemann_rect_fill_opacity)
flat_rects = self.get_riemann_rectangles(
self.get_graph(lambda t : 0),
x_min = 0, x_max = 8, dx = 1
)
rects = rect_list[0]
rect = rects[1]
flat_rects.submobjects[1] = rect.copy()
right_brace = Brace(rect, RIGHT)
top_brace = Brace(rect, UP)
right_brace.label = right_brace.get_text("$7\\frac{\\text{m}}{\\text{s}}$")
top_brace.label = top_brace.get_text("$1$s")
self.play(FadeIn(rect))
for brace in right_brace, top_brace:
self.play(
GrowFromCenter(brace),
Write(brace.label, run_time = 1),
)
brace.add(brace.label)
self.dither()
self.play(
ReplacementTransform(
flat_rects, rects,
run_time = 2,
submobject_mode = "lagged_start",
),
Animation(right_brace)
)
self.play(*map(FadeOut, [top_brace, right_brace]))
self.dither()
self.rects = rects
self.rect_list = rect_list
def approximate_original_curve(self):
rects = self.rects
self.play(
FadeOut(self.pw_constant_graph),
*[
m.restore
for m in self.v_graph, self.v_graph_label
]+[Animation(self.rects)]
)
for new_rects in self.rect_list[1:]:
rects.align_submobjects(new_rects)
for every_other_rect in rects[::2]:
every_other_rect.set_fill(opacity = 0)
self.play(Transform(
rects, new_rects,
run_time = 2,
submobject_mode = "lagged_start"
))
self.dither()
def revert_to_specific_approximation(self):
rects = self.rects
rects.save_state()
target_rects = self.rect_list[2]
target_rects.set_fill(opacity = 1)
ticks = self.get_ticks(target_rects)
tick_pair = VGroup(*ticks[4:6])
brace = Brace(tick_pair, DOWN, buff = 0)
dt_label = brace.get_text("$dt$", buff = SMALL_BUFF)
example_text = TextMobject(
"For example, \\\\",
"$dt$", "$=0.25$"
)
example_text.to_corner(UP+RIGHT)
example_text.highlight_by_tex("dt", YELLOW)
self.play(ReplacementTransform(
rects, target_rects,
run_time = 2,
submobject_mode = "lagged_start"
))
rects.restore()
self.dither()
self.play(
ShowCreation(ticks),
FadeOut(self.x_axis.numbers)
)
self.play(
GrowFromCenter(brace),
Write(dt_label)
)
self.dither()
self.play(
FadeIn(
example_text,
run_time = 2,
submobject_mode = "lagged_start",
),
ReplacementTransform(
dt_label.copy(),
example_text.get_part_by_tex("dt")
)
)
self.dither()
self.rects = rects = target_rects
self.ticks = ticks
self.dt_brace = brace
self.dt_label = dt_label
self.dt_example_text = example_text
def show_specific_rectangle(self):
rects = self.rects
rect = rects[4].copy()
rect_top = Line(
rect.get_corner(UP+LEFT),
rect.get_corner(UP+RIGHT),
color = self.v_graph.get_color()
)
t_vals = [1, 1.25]
t_labels = VGroup(*[
TexMobject("t=%s"%str(t))
for t in t_vals
])
t_labels.scale(0.7)
t_labels.next_to(rect, DOWN)
for vect, label in zip([LEFT, RIGHT], t_labels):
label.shift(1.5*vect)
label.add(Arrow(
label.get_edge_center(-vect),
rect.get_corner(DOWN+vect),
buff = SMALL_BUFF,
tip_length = 0.15,
color = WHITE
))
v_lines = VGroup()
h_lines = VGroup()
height_labels = VGroup()
for t in t_vals:
v_line = self.get_vertical_line_to_graph(
t, self.v_graph,
color = YELLOW
)
y_axis_point = self.graph_origin[0]*RIGHT
y_axis_point += v_line.get_end()[1]*UP
h_line = DashedLine(v_line.get_end(), y_axis_point)
label = TexMobject("%.1f"%v_func(t))
label.scale(0.5)
label.next_to(h_line, LEFT, SMALL_BUFF)
v_lines.add(v_line)
h_lines.add(h_line)
height_labels.add(label)
circle = Circle(radius = 0.25, color = WHITE)
circle.move_to(rect.get_top())
self.play(
rects.set_fill, None, 0.25,
Animation(rect)
)
self.dither()
for label in t_labels:
self.play(FadeIn(label))
self.dither()
for v_line, h_line, label in zip(v_lines, h_lines, height_labels):
self.play(ShowCreation(v_line))
self.play(ShowCreation(h_line))
self.play(Write(label, run_time = 1))
self.dither()
self.dither()
t_label_copy = t_labels[0].copy()
self.play(
t_label_copy.scale, 1./0.7,
t_label_copy.next_to, self.v_graph_label, DOWN+LEFT, 0
)
self.dither()
self.play(FadeOut(t_label_copy))
self.dither()
self.play(ShowCreation(circle))
self.play(ShowCreation(rect_top))
self.play(FadeOut(circle))
rect.add(rect_top)
self.dither()
for x in range(2):
self.play(
rect.stretch_to_fit_height, v_lines[1].get_height(),
rect.move_to, rect.get_bottom(), DOWN,
Animation(v_lines),
run_time = 4,
rate_func = there_and_back
)
self.play(*map(FadeOut, [
group[1]
for group in v_lines, h_lines, height_labels
]))
self.play(
v_lines[0].highlight, RED,
rate_func = there_and_back,
)
self.dither()
area = TextMobject(
"7$\\frac{\\text{m}}{\\text{s}}$",
"$\\times$",
"0.25s",
"=",
"1.75m"
)
area.next_to(rect, RIGHT, LARGE_BUFF)
arrow = Arrow(
area.get_left(), rect.get_center(),
buff = 0,
color = WHITE
)
area.shift(SMALL_BUFF*RIGHT)
self.play(
Write(area),
ShowCreation(arrow)
)
self.dither(2)
self.play(*map(FadeOut, [
area, arrow,
v_lines[0], h_lines[0], height_labels[0],
rect, t_labels
]))
def show_v_dt_for_all_rectangles(self):
dt_brace_group = VGroup(self.dt_brace, self.dt_label)
rects_subset = self.rects[10:15]
last_rect = None
for rect in rects_subset:
brace = Brace(rect, LEFT, buff = 0)
v_t = TexMobject("v(t)")
v_t.next_to(brace, LEFT, SMALL_BUFF)
anims = [
rect.set_fill, None, 1,
dt_brace_group.next_to, rect, DOWN, SMALL_BUFF
]
if last_rect is not None:
anims += [
last_rect.set_fill, None, 0.25,
ReplacementTransform(last_brace, brace),
ReplacementTransform(last_v_t, v_t),
]
else:
anims += [
GrowFromCenter(brace),
Write(v_t)
]
self.play(*anims)
self.dither()
last_rect = rect
last_brace = brace
last_v_t = v_t
self.v_t = last_v_t
self.v_t_brace = last_brace
def write_integral_symbol(self):
integral = TexMobject(
"\\int", "^8", "_0", "v(t)", "\\,dt"
)
integral.to_corner(UP+RIGHT)
int_copy = integral.get_part_by_tex("int").copy()
bounds = map(integral.get_part_by_tex, ["0", "8"])
sum_word = TextMobject("``Sum''")
sum_word.next_to(integral, DOWN, MED_LARGE_BUFF, LEFT)
alt_sum_word = sum_word.copy()
int_symbol = TexMobject("\\int")
int_symbol.replace(alt_sum_word[1], dim_to_match = 1)
alt_sum_word.submobjects[1] = int_symbol
self.play(FadeOut(self.dt_example_text))
self.play(Write(integral.get_part_by_tex("int")))
self.dither()
self.play(Transform(int_copy, int_symbol))
self.play(Write(alt_sum_word), Animation(int_copy))
self.remove(int_copy)
self.play(ReplacementTransform(alt_sum_word, sum_word))
self.dither()
for bound in bounds:
self.play(Write(bound))
self.dither()
for bound, num in zip(bounds, [0, 8]):
bound_copy = bound.copy()
point = self.coords_to_point(num, 0)
self.play(
bound_copy.scale, 1.5,
bound_copy.next_to, point, DOWN, MED_LARGE_BUFF
)
self.play(ApplyWave(self.ticks, direction = UP))
self.dither()
for mob, tex in (self.v_t, "v(t)"), (self.dt_label, "dt"):
self.play(ReplacementTransform(
mob.copy().highlight(YELLOW),
integral.get_part_by_tex(tex),
run_time = 2
))
self.dither()
self.integral = integral
self.sum_word = sum_word
def roles_of_dt(self):
rects = self.rects
next_rects = self.rect_list[3]
morty = Mortimer().flip()
morty.to_corner(DOWN+LEFT)
int_dt = self.integral.get_part_by_tex("dt")
dt_copy = int_dt.copy()
self.play(FadeIn(morty))
self.play(
morty.change_mode, "raise_right_hand",
morty.look, UP+RIGHT,
dt_copy.next_to, morty.get_corner(UP+RIGHT), UP,
dt_copy.highlight, YELLOW
)
self.play(Blink(morty))
self.play(
ReplacementTransform(
dt_copy.copy(), int_dt,
run_time = 2
),
morty.look_at, int_dt
)
self.dither(2)
self.play(
ReplacementTransform(dt_copy.copy(), self.dt_label),
morty.look_at, self.dt_label
)
self.play(*[
ApplyMethod(
tick.shift, tick.get_height()*UP/2,
run_time = 2,
rate_func = squish_rate_func(
there_and_back,
alpha, alpha+0.2,
)
)
for tick, alpha in zip(
self.ticks,
np.linspace(0, 0.8, len(self.ticks))
)
])
self.dither()
#Shrink dt just a bit
self.play(
morty.change_mode, "pondering",
rects.set_fill, None, 0.75,
*map(FadeOut, [
dt_copy, self.v_t, self.v_t_brace
])
)
rects.align_submobjects(next_rects)
for every_other_rect in rects[::2]:
every_other_rect.set_fill(opacity = 0)
self.play(
self.dt_brace.stretch, 0.5, 0,
self.dt_brace.move_to, self.dt_brace, LEFT,
ReplacementTransform(
rects, next_rects,
run_time = 2,
submobject_mode = "lagged_start"
),
Transform(
self.ticks, self.get_ticks(next_rects),
run_time = 2,
submobject_mode = "lagged_start",
),
)
self.rects = rects = next_rects
self.dither()
self.play(Blink(morty))
self.play(*[
ApplyFunction(
lambda r : r.shift(0.2*UP).set_fill(None, 1),
rect,
run_time = 2,
rate_func = squish_rate_func(
there_and_back,
alpha, alpha+0.2,
)
)
for rect, alpha in zip(
rects,
np.linspace(0, 0.8, len(rects))
)
]+[
morty.change_mode, "thinking",
])
self.dither()
self.morty = morty
def what_does_sum_approach(self):
morty = self.morty
rects = self.rects
cross = TexMobject("\\times")
cross.replace(self.sum_word, stretch = True)
cross.highlight(RED)
brace = Brace(self.integral, DOWN)
dt_to_0 = brace.get_text("$dt \\to 0$")
distance_words = TextMobject(
"Area", "= Distance traveled"
)
distance_words.next_to(rects, UP)
arrow = Arrow(
distance_words[0].get_bottom(),
rects.get_center(),
color = WHITE
)
self.play(PiCreatureSays(
morty, "Why not $\\Sigma$?",
target_mode = "sassy"
))
self.play(Blink(morty))
self.dither()
self.play(Write(cross))
self.dither()
self.play(
RemovePiCreatureBubble(morty, target_mode = "plain"),
*map(FadeOut, [
cross, self.sum_word, self.ticks,
self.dt_brace, self.dt_label,
])
)
self.play(FadeIn(brace), FadeIn(dt_to_0))
for new_rects in self.rect_list[4:]:
rects.align_submobjects(new_rects)
for every_other_rect in rects[::2]:
every_other_rect.set_fill(opacity = 0)
self.play(
Transform(
rects, new_rects,
run_time = 2,
submobject_mode = "lagged_start"
),
morty.look_at, rects,
)
self.dither()
self.play(
Write(distance_words),
ShowCreation(arrow),
morty.change_mode, "pondering",
morty.look_at, distance_words,
)
self.dither()
self.play(Blink(morty))
self.dither()
self.area_arrow = arrow
def label_integral(self):
words = TextMobject("``Integral of $v(t)$''")
words.to_edge(UP)
arrow = Arrow(
words.get_right(),
self.integral.get_left()
)
self.play(Indicate(self.integral))
self.play(Write(words, run_time = 2))
self.play(ShowCreation(arrow))
self.dither()
self.play(*[
ApplyFunction(
lambda r : r.shift(0.2*UP).set_fill(None, 1),
rect,
run_time = 3,
rate_func = squish_rate_func(
there_and_back,
alpha, alpha+0.2,
)
)
for rect, alpha in zip(
self.rects,
np.linspace(0, 0.8, len(self.rects))
)
]+[
Animation(self.area_arrow),
self.morty.change_mode, "happy",
self.morty.look_at, self.rects,
])
self.dither()
#####
def get_pw_constant_graph(self):
result = VGroup()
for left_x in range(8):
xs = [left_x, left_x+1]
y = self.v_graph.underlying_function(left_x)
line = Line(*[
self.coords_to_point(x, y)
for x in xs
])
line.highlight(self.v_graph.get_color())
result.add(line)
return result
def get_ticks(self, rects):
ticks = VGroup(*[
Line(
point+self.tick_size*UP/2,
point+self.tick_size*DOWN/2
)
for t in np.linspace(0, 8, len(rects)+1)
for point in [self.coords_to_point(t, 0)]
])
ticks.highlight(YELLOW)
return ticks
class CarJourneyApproximation(Scene):
CONFIG = {
"n_jumps" : 5,
}
def construct(self):
points = [5*LEFT + v for v in UP, 2*DOWN]
cars = [Car().move_to(point) for point in points]
h_line = Line(LEFT, RIGHT).scale(SPACE_WIDTH)
words = [
TextMobject("Real motion (smooth)").shift(3*UP),
TextMobject("Approximated motion (jerky)").shift(0.5*DOWN),
]
self.add(h_line, *cars + words)
self.dither()
self.play(*[
MoveCar(
car, point+10*RIGHT,
run_time = 5,
rate_func = rf
)
for car, point, rf in zip(cars, points, [
s_rate_func,
self.get_approximated_rate_func(self.n_jumps)
])
])
self.dither()
def get_approximated_rate_func(self, n):
new_v_rate_func = lambda t : v_rate_func(np.floor(t*n)/n)
max_integral, err = scipy.integrate.quad(
v_rate_func, 0, 1
)
def result(t):
integral, err = scipy.integrate.quad(new_v_rate_func, 0, t)
return integral/max_integral
return result
class LessWrongCarJourneyApproximation(CarJourneyApproximation):
CONFIG = {
"n_jumps" : 20,
}
class TellMeThatsNotSurprising(TeacherStudentsScene):
def construct(self):
self.teacher_says(
"Tell me that's \\\\ not surprising!",
target_mode = "hooray",
run_time = 1
)
self.dither(3)
class HowDoesThisHelp(TeacherStudentsScene):
def construct(self):
self.student_says(
"How does this help\\textinterrobang",
target_mode = "angry",
run_time = 1
)
self.change_student_modes(
"confused", "angry", "confused",
)
self.dither(2)
self.teacher_says(
"You're right.",
target_mode = "shruggie",
run_time = 1
)
self.change_student_modes(*["sassy"]*3)
self.dither(2)
class AreaUnderACurve(GraphScene):
CONFIG = {
"y_max" : 4,
"y_min" : 0,
"num_iterations" : 7
}
def construct(self):
self.setup_axes()
graph = self.get_graph(self.func)
rect_list = self.get_riemann_rectangles_list(
graph, self.num_iterations
)
VGroup(*rect_list).set_fill(opacity = 0.8)
rects = rect_list[0]
self.play(ShowCreation(graph))
self.play(Write(rects))
for new_rects in rect_list[1:]:
rects.align_submobjects(new_rects)
for every_other_rect in rects[::2]:
every_other_rect.set_fill(opacity = 0)
self.play(Transform(
rects, new_rects,
run_time = 2,
submobject_mode = "lagged_start"
))
self.dither()
def func(self, x):
return np.sin(x) + 1
class AltAreaUnderCurve(AreaUnderACurve):
CONFIG = {
"graph_origin" : 2*DOWN,
"x_min" : -3,
"x_max" : 3,
"x_axis_width" : 12,
"y_max" : 2,
"y_axis_height" : 4,
}
def func(self, x):
return np.exp(-x**2)
class Chapter1Wrapper(Chapter2Wrapper):
CONFIG = {
"title" : "Essence of calculus, chapter 1",
}
class AreaIsDerivative(PlotVelocity, ReconfigurableScene):
CONFIG = {
"y_axis_label" : "",
"num_rects" : 400,
"dT" : 0.25,
}
def setup(self):
PlotVelocity.setup(self)
ReconfigurableScene.setup(self)
self.setup_axes()
self.add(*self.get_v_graph_and_label())
self.x_axis_label_mob.shift(MED_LARGE_BUFF*DOWN)
self.v_graph_label.shift(MED_LARGE_BUFF*DOWN)
self.foreground_mobjects = []
def construct(self):
self.introduce_variable_area()
self.write_integral()
self.nudge_input()
self.show_rectangle_approximation()
def introduce_variable_area(self):
area = self.area = self.get_area(0, 6)
x_nums = self.x_axis.numbers
self.play(Write(area, run_time = 2))
self.play(FadeOut(self.x_axis.numbers))
self.add_T_label(6)
self.change_area_bounds(
new_t_max = 4,
rate_func = there_and_back,
run_time = 2
)
self.dither()
def write_integral(self):
integral = TexMobject("\\int", "^T", "_0", "v(t)", "\\,dt")
integral.to_corner(UP+RIGHT)
integral.shift(2*LEFT)
top_T = integral.get_part_by_tex("T")
moving_T = self.T_label_group[0]
s_T = TexMobject("s(T)", "= ")
s_T.highlight_by_tex("s", DISTANCE_COLOR)
s_T.next_to(integral, LEFT)
int_arrow, s_arrow = [
Arrow(
mob.get_left(), self.area.get_center(),
color = WHITE
)
for mob in integral, s_T
]
distance_word = TextMobject("Distance")
distance_word.move_to(self.area)
self.play(Write(integral))
self.play(ShowCreation(int_arrow))
self.foreground_mobjects.append(int_arrow)
self.dither()
self.change_area_bounds(
new_t_max = 8,
rate_func = there_and_back,
run_time = 3,
)
self.play(Indicate(top_T))
self.play(ReplacementTransform(
top_T.copy(), moving_T
))
self.change_area_bounds(
new_t_max = 3,
rate_func = there_and_back,
run_time = 3
)
self.dither()
self.play(Write(distance_word, run_time = 2))
self.play(
ReplacementTransform(int_arrow, s_arrow),
FadeIn(s_T)
)
self.dither()
self.play(FadeOut(distance_word))
self.change_area_bounds(new_t_max = 0, run_time = 2)
self.change_area_bounds(
new_t_max = 8,
rate_func = None,
run_time = 7.9,
)
self.dither()
self.change_area_bounds(new_t_max = 5)
self.dither()
def nudge_input(self):
dark_area = self.area.copy()
dark_area.set_fill(BLACK, opacity = 0.5)
curr_T = self.x_axis.point_to_number(self.area.get_right())
new_T = curr_T + self.dT
rect = Rectangle(
stroke_width = 0,
fill_color = YELLOW,
fill_opacity = 0.75
)
rect.replace(
VGroup(
VectorizedPoint(self.coords_to_point(new_T, 0)),
self.right_v_line,
),
stretch = True
)
dT_brace = Brace(rect, DOWN, buff = 0)
dT_label = dT_brace.get_text("$dT$", buff = SMALL_BUFF)
dT_label_group = VGroup(dT_label, dT_brace)
ds_label = TexMobject("ds")
ds_label.next_to(rect, RIGHT, LARGE_BUFF, UP)
ds_label.highlight(DISTANCE_COLOR)
ds_arrow = Arrow(ds_label.get_left(), rect.get_left())
ds_arrow.highlight(WHITE)
v_brace = Brace(rect, LEFT, buff = SMALL_BUFF)
v_T_label = v_brace.get_text("$v(T)$", buff = SMALL_BUFF)
self.change_area_bounds(new_t_max = new_T)
self.play(
FadeIn(dark_area),
*map(Animation, self.foreground_mobjects)
)
self.play(
FadeOut(self.T_label_group),
FadeIn(dT_label_group)
)
self.dither()
self.play(Write(ds_label))
self.play(ShowCreation(ds_arrow))
self.dither(2)
self.play(GrowFromCenter(v_brace))
self.play(ReplacementTransform(
self.v_graph_label.get_part_by_tex("v").copy(),
v_T_label,
run_time = 2
))
self.dither()
self.play(Indicate(dT_label))
self.dither()
self.rect = rect
self.dT_label_group = dT_label_group
self.v_T_label_group = VGroup(v_T_label, v_brace)
self.dark_area = dark_area
self.ds_label = ds_label
self.ds_arrow = ds_arrow
def show_rectangle_approximation(self):
formula1 = TexMobject("ds", "=", "v(T)", "dT")
formula2 = TexMobject("{ds", "\\over\\,", "dT}", "=", "v(T)")
for formula in formula1, formula2:
formula.next_to(self.v_graph_label, UP, LARGE_BUFF)
formula.highlight_by_tex("ds", DISTANCE_COLOR)
self.play(
DrawBorderThenFill(self.rect),
Animation(self.ds_arrow)
)
self.dither()
self.play(*[
ReplacementTransform(
mob, formula1.get_part_by_tex(tex),
run_time = 2
)
for mob, tex in [
(self.ds_label, "ds"),
(self.ds_arrow, "="),
(self.v_T_label_group[0].copy(), "v(T)"),
(self.dT_label_group[0].copy(), "dT"),
]
])
self.dither()
self.transition_to_alt_config(
dT = self.dT/5.0,
transformation_kwargs = {"run_time" : 2},
)
self.dither()
self.play(*[
ReplacementTransform(
formula1.get_part_by_tex(tex),
formula2.get_part_by_tex(tex),
)
for tex in "ds", "=", "v(T)", "dT"
] + [
Write(formula2.get_part_by_tex("over"))
])
self.dither()
####
def add_T_label(self, x_val, **kwargs):
triangle = RegularPolygon(n=3, start_angle = np.pi/2)
triangle.scale_to_fit_height(MED_SMALL_BUFF)
triangle.move_to(self.coords_to_point(x_val, 0), UP)
triangle.set_fill(WHITE, 1)
triangle.set_stroke(width = 0)
T_label = TexMobject("T")
T_label.next_to(triangle, DOWN)
v_line = self.get_vertical_line_to_graph(
x_val, self.v_graph,
color = YELLOW
)
self.play(
DrawBorderThenFill(triangle),
ShowCreation(v_line),
Write(T_label, run_time = 1),
**kwargs
)
self.T_label_group = VGroup(T_label, triangle)
self.right_v_line = v_line
def get_area(self, t_min, t_max):
numerator = max(t_max - t_min, 0.01)
dx = float(numerator) / self.num_rects
return self.get_riemann_rectangles(
self.v_graph,
x_min = t_min,
x_max = t_max,
dx = dx,
stroke_width = 0,
).set_fill(opacity = 0.8)
def change_area_bounds(self, new_t_min = None, new_t_max = None, **kwargs):
curr_t_min = self.x_axis.point_to_number(self.area.get_left())
curr_t_max = self.x_axis.point_to_number(self.area.get_right())
if new_t_min is None:
new_t_min = curr_t_min
if new_t_max is None:
new_t_max = curr_t_max
group = VGroup(self.area, self.right_v_line, self.T_label_group)
def update_group(group, alpha):
area, v_line, T_label = group
t_min = interpolate(curr_t_min, new_t_min, alpha)
t_max = interpolate(curr_t_max, new_t_max, alpha)
new_area = self.get_area(t_min, t_max)
new_v_line = self.get_vertical_line_to_graph(
t_max, self.v_graph
)
new_v_line.highlight(v_line.get_color())
T_label.move_to(new_v_line.get_bottom(), UP)
#Fade close to 0
T_label[0].set_fill(opacity = min(1, t_max))
Transform(area, new_area).update(1)
Transform(v_line, new_v_line).update(1)
return group
self.play(
UpdateFromAlphaFunc(group, update_group),
*map(Animation, self.foreground_mobjects),
**kwargs
)
class DirectInterpretationOfDsDt(TeacherStudentsScene):
def construct(self):
equation = TexMobject("{ds", "\\over\\,", "dT}", "(T)", "=", "v(T)")
ds, over, dt, of_T, equals, v = equation
equation.next_to(self.get_pi_creatures(), UP, LARGE_BUFF)
equation.shift(RIGHT)
v.highlight(VELOCITY_COLOR)
s_words = TextMobject("Tiny change in", "distance")
s_words.next_to(ds, UP+LEFT, LARGE_BUFF)
s_words.shift_onto_screen()
s_arrow = Arrow(s_words[1].get_bottom(), ds.get_left())
s_words.add(s_arrow)
s_words.highlight(DISTANCE_COLOR)
t_words = TextMobject("Tiny change in", "time")
t_words.next_to(dt, DOWN+LEFT)
t_words.to_edge(LEFT)
t_arrow = Arrow(t_words[1].get_top(), dt.get_left())
t_words.add(t_arrow)
t_words.highlight(TIME_COLOR)
self.add(ds, over, dt, of_T)
for words, part in (s_words, ds), (t_words, dt):
self.play(
FadeIn(
words,
run_time = 2,
submobject_mode = "lagged_start",
),
self.students[1].change_mode, "raise_right_hand"
)
self.play(part.highlight, words.get_color())
self.dither()
self.play(Write(VGroup(equals, v)))
self.change_student_modes(*["pondering"]*3)
self.dither(3)
class FindAntiderivative(Antiderivative):
def construct(self):
self.introduce()
self.first_part()
self.second_part()
self.combine()
self.add_plus_C()
def introduce(self):
q_marks, rhs = functions = self.get_functions("???", "t(8-t)")
expanded_rhs = TexMobject("8t - t^2")
expanded_rhs.move_to(rhs, LEFT)
expanded_rhs.highlight(rhs.get_color())
self.v_part1 = VGroup(*expanded_rhs[:2])
self.v_part2 = VGroup(*expanded_rhs[2:])
for part in self.v_part1, self.v_part2:
part.save_state()
top_arc, bottom_arc = arcs = self.get_arcs(functions)
derivative, antiderivative = words = self.get_arc_labels(arcs)
self.add(functions)
self.play(*map(ShowCreation, arcs))
for word in words:
self.play(FadeIn(word, submobject_mode = "lagged_start"))
self.dither()
self.change_mode("confused")
self.dither(2)
self.play(*[
ReplacementTransform(
rhs[i], expanded_rhs[j],
run_time = 2,
path_arc = np.pi
)
for i, j in enumerate([1, 4, 0, 2, 3, 4])
]+[
self.pi_creature.change_mode, "hesitant"
])
self.dither()
self.q_marks = q_marks
self.arcs = arcs
self.words = words
def first_part(self):
four_t_squared, two_t = self.get_functions("4t^2", "2t")
four = four_t_squared[0]
four.shift(UP)
four.set_fill(opacity = 0)
t_squared = VGroup(*four_t_squared[1:])
two_t.move_to(self.v_part1, LEFT)
self.play(self.v_part2.to_corner, UP+RIGHT)
self.play(
self.pi_creature.change, "plain", self.v_part1
)
self.play(ApplyWave(
self.q_marks,
direction = UP,
amplitude = SMALL_BUFF
))
self.dither(2)
self.play(
FadeOut(self.q_marks),
FadeIn(t_squared),
self.v_part1.shift, DOWN+RIGHT,
)
self.play(*[
ReplacementTransform(
t_squared[i].copy(), two_t[1-i],
run_time = 2,
path_arc = -np.pi/6.
)
for i in 0, 1
])
self.change_mode("thinking")
self.dither()
self.play(four.set_fill, YELLOW, 1)
self.play(four.shift, DOWN)
self.play(FadeOut(two_t))
self.play(self.v_part1.restore)
self.play(four.highlight, DISTANCE_COLOR)
self.dither(2)
self.s_part1 = four_t_squared
def second_part(self):
self.arcs_copy = self.arcs.copy()
self.words_copy = self.words.copy()
part1_group = VGroup(
self.s_part1, self.v_part1,
self.arcs_copy, self.words_copy
)
neg_third_t_cubed, three_t_squared = self.get_functions(
"- \\frac{1}{3} t^3", "3t^2"
)
three_t_squared.move_to(self.v_part1, LEFT)
neg = neg_third_t_cubed[0]
third = VGroup(*neg_third_t_cubed[1:4])
t_cubed = VGroup(*neg_third_t_cubed[4:])
three = three_t_squared[0]
t_squared = VGroup(*three_t_squared[1:])
self.play(
part1_group.scale, 0.5,
part1_group.to_corner, UP+LEFT,
self.pi_creature.change_mode, "plain"
)
self.play(
self.v_part2.restore,
self.v_part2.shift, LEFT
)
self.play(FadeIn(self.q_marks))
self.dither()
self.play(
FadeOut(self.q_marks),
FadeIn(t_cubed),
self.v_part2.shift, DOWN+RIGHT
)
self.play(*[
ReplacementTransform(
t_cubed[i].copy(), three_t_squared[j],
path_arc = -np.pi/6,
run_time = 2,
)
for i, j in (0, 1), (1, 0), (1, 2)
])
self.dither()
self.play(FadeIn(third))
self.play(FadeOut(three))
self.dither(2)
self.play(Write(neg))
self.play(
FadeOut(t_squared),
self.v_part2.shift, UP+LEFT
)
self.dither(2)
self.s_part2 = neg_third_t_cubed
def combine(self):
self.play(
self.v_part1.restore,
self.v_part2.restore,
self.s_part1.scale, 2,
self.s_part1.next_to, self.s_part2, LEFT,
FadeOut(self.arcs_copy),
FadeOut(self.words_copy),
run_time = 2,
)
self.change_mode("happy")
self.dither(2)
def add_plus_C(self):
s_group = VGroup(self.s_part1, self.s_part2)
plus_Cs = [
TexMobject("+%d"%d)
for d in range(1, 8)
]
for plus_C in plus_Cs:
plus_C.highlight(YELLOW)
plus_C.move_to(s_group, RIGHT)
plus_C = plus_Cs[0]
self.change_mode("sassy")
self.dither()
self.play(
s_group.next_to, plus_C.copy(), LEFT,
GrowFromCenter(plus_C),
)
self.dither()
for new_plus_C in plus_Cs[1:]:
self.play(Transform(plus_C, new_plus_C))
self.dither()
class GraphSPlusC(GraphDistanceVsTime):
CONFIG = {
"y_axis_label" : "Distance"
}
def construct(self):
self.setup_axes()
graph = self.get_graph(
s_func,
color = DISTANCE_COLOR,
x_min = 0,
x_max = 8,
)
tangent = self.get_secant_slope_group(
6, graph, dx = 0.01
).secant_line
v_line = self.get_vertical_line_to_graph(
6, graph, line_class = DashedLine
)
v_line.scale_in_place(2)
v_line.highlight(WHITE)
graph_label, plus_C = full_label = TexMobject(
"s(t) = 4t^2 - \\frac{1}{3}t^3", "+C"
)
plus_C.highlight(YELLOW)
full_label.next_to(graph.points[-1], DOWN)
full_label.to_edge(RIGHT)
self.play(ShowCreation(graph))
self.play(FadeIn(graph_label))
self.dither()
self.play(
graph.shift, UP,
run_time = 2,
rate_func = there_and_back
)
self.play(ShowCreation(tangent))
graph.add(tangent)
self.play(ShowCreation(v_line))
self.play(
graph.shift, 2*DOWN,
run_time = 4,
rate_func = there_and_back,
)
self.play(Write(plus_C))
self.play(
graph.shift, 2*UP,
rate_func = there_and_back,
run_time = 4,
)
self.dither()
class LowerBound(AreaIsDerivative):
CONFIG = {
"graph_origin" : 2.5*DOWN + 6*LEFT
}
def construct(self):
self.add_integral_and_area()
self.mention_lower_bound()
self.drag_right_endpoint_to_zero()
self.write_antiderivative_difference()
self.show_alternate_antiderivative_difference()
self.add_constant_to_antiderivative()
def add_integral_and_area(self):
self.area = self.get_area(0, 6)
self.integral = self.get_integral("0", "T")
self.remove(self.x_axis.numbers)
self.add(self.area, self.integral)
self.add_T_label(6, run_time = 0)
def mention_lower_bound(self):
lower_bound = self.integral.get_part_by_tex("0")
circle = Circle(color = YELLOW)
circle.replace(lower_bound)
circle.scale_in_place(3)
zero_label = lower_bound.copy()
self.play(ShowCreation(circle))
self.play(Indicate(lower_bound))
self.play(
zero_label.scale, 1.5,
zero_label.next_to, self.graph_origin, DOWN, MED_LARGE_BUFF,
FadeOut(circle)
)
self.dither()
self.zero_label = zero_label
def drag_right_endpoint_to_zero(self):
zero_integral = self.get_integral("0", "0")
zero_integral[1].highlight(YELLOW)
zero_int_bounds = list(reversed(
zero_integral.get_parts_by_tex("0")
))
for bound in zero_int_bounds:
circle = Circle(color = YELLOW)
circle.replace(bound)
circle.scale_in_place(3)
bound.circle = circle
self.integral.save_state()
equals_zero = TexMobject("=0")
equals_zero.next_to(zero_integral, RIGHT)
equals_zero.highlight(GREEN)
self.change_area_bounds(0, 0, run_time = 3)
self.play(ReplacementTransform(
self.zero_label.copy(), equals_zero
))
self.play(Transform(self.integral, zero_integral))
self.dither(2)
for bound in zero_int_bounds:
self.play(ShowCreation(bound.circle))
self.play(FadeOut(bound.circle))
self.play(*[
ReplacementTransform(
bound.copy(), VGroup(equals_zero[1])
)
for bound in zero_int_bounds
])
self.dither(2)
self.change_area_bounds(0, 5)
self.play(
self.integral.restore,
FadeOut(equals_zero)
)
self.zero_integral = zero_integral
def write_antiderivative_difference(self):
antideriv_diff = self.get_antiderivative_difference("0", "T")
equals, at_T, minus, at_zero = antideriv_diff
antideriv_diff_at_eight = self.get_antiderivative_difference("0", "8")
at_eight = antideriv_diff_at_eight.left_part
integral_at_eight = self.get_integral("0", "8")
for part in at_T, at_zero, at_eight:
part.brace = Brace(part, DOWN, buff = SMALL_BUFF)
part.brace.save_state()
antideriv_text = at_T.brace.get_text("Antiderivative", buff = SMALL_BUFF)
antideriv_text.highlight(MAROON_B)
value_at_eight = at_eight.brace.get_text(
"%.2f"%s_func(8)
)
happens_to_be_zero = at_zero.brace.get_text("""
Happens to
equal 0
""")
big_brace = Brace(VGroup(at_T, at_zero))
cancel_text = big_brace.get_text("Cancels when $T=0$")
self.play(*map(Write, [equals, at_T]))
self.play(
GrowFromCenter(at_T.brace),
Write(antideriv_text, run_time = 2)
)
self.change_area_bounds(0, 5.5, rate_func = there_and_back)
self.dither()
self.play(
ReplacementTransform(at_T.copy(), at_zero),
Write(minus)
)
self.dither()
self.play(
ReplacementTransform(at_T.brace, big_brace),
ReplacementTransform(antideriv_text, cancel_text)
)
self.change_area_bounds(0, 0, run_time = 4)
self.dither()
self.play(
ReplacementTransform(big_brace, at_zero.brace),
ReplacementTransform(cancel_text, happens_to_be_zero),
)
self.dither(2)
self.change_area_bounds(0, 8, run_time = 2)
self.play(
Transform(self.integral, integral_at_eight),
Transform(antideriv_diff, antideriv_diff_at_eight),
MaintainPositionRelativeTo(at_zero.brace, at_zero),
MaintainPositionRelativeTo(happens_to_be_zero, at_zero.brace),
)
self.play(
GrowFromCenter(at_eight.brace),
Write(value_at_eight)
)
self.dither(2)
self.play(*map(FadeOut, [
at_eight.brace, value_at_eight,
at_zero.brace, happens_to_be_zero,
]))
self.antideriv_diff = antideriv_diff
def show_alternate_antiderivative_difference(self):
new_integral = self.get_integral("1", "7")
new_antideriv_diff = self.get_antiderivative_difference("1", "7")
numbers = [
TexMobject("%d"%d).next_to(
self.coords_to_point(d, 0),
DOWN, MED_LARGE_BUFF
)
for d in 1, 7
]
tex_mobs = [new_integral]+new_antideriv_diff[1::2]+numbers
for tex_mob in tex_mobs:
tex_mob.highlight_by_tex("1", RED)
tex_mob.highlight_by_tex("7", GREEN)
tex_mob.highlight_by_tex("\\frac{1}{3}", WHITE)
self.change_area_bounds(1, 7, run_time = 2)
self.play(
self.T_label_group[0].set_fill, None, 0,
*map(FadeIn, numbers)
)
self.play(
Transform(self.integral, new_integral),
Transform(self.antideriv_diff, new_antideriv_diff),
)
self.dither(3)
for part in self.antideriv_diff[1::2]:
self.play(Indicate(part, scale_factor = 1.1))
self.dither()
def add_constant_to_antiderivative(self):
antideriv_diff = self.antideriv_diff
plus_fives = VGroup(*[TexMobject("+5") for i in range(2)])
plus_fives.highlight(YELLOW)
for five, part in zip(plus_fives, antideriv_diff[1::2]):
five.next_to(part, DOWN)
group = VGroup(
plus_fives[0],
antideriv_diff[2].copy(),
plus_fives[1]
)
self.play(Write(plus_fives, run_time = 2))
self.dither(2)
self.play(
group.arrange_submobjects,
group.next_to, antideriv_diff, DOWN, MED_LARGE_BUFF
)
self.dither()
self.play(FadeOut(group, run_time = 2))
self.dither()
#####
def get_integral(self, lower_bound, upper_bound):
result = TexMobject(
"\\int", "^"+upper_bound, "_"+lower_bound,
"t(8-t)", "\\,dt"
)
result.next_to(self.graph_origin, RIGHT, MED_LARGE_BUFF)
result.to_edge(UP)
return result
def get_antiderivative_difference(self, lower_bound, upper_bound):
strings = []
for bound in upper_bound, lower_bound:
try:
d = int(bound)
strings.append("(%d)"%d)
except:
strings.append(bound)
parts = []
for s in strings:
part = TexMobject(
"\\left(",
"4", s, "^2", "-", "\\frac{1}{3}", s, "^3"
"\\right))"
)
part.highlight_by_tex(s, YELLOW, substring = False)
parts.append(part)
result = VGroup(
TexMobject("="), parts[0],
TexMobject("-"), parts[1],
)
result.left_part, result.right_part = parts
result.arrange_submobjects(RIGHT)
result.scale(0.9)
result.next_to(self.integral, RIGHT)
return result
class FundamentalTheorem(GraphScene):
CONFIG = {
"lower_bound" : 1,
"upper_bound" : 7,
"lower_bound_color" : RED,
"upper_bound_color" : GREEN,
"n_riemann_iterations" : 6,
}
def construct(self):
self.add_graph_and_integral()
self.show_f_dx_sum()
self.show_rects_approaching_area()
self.write_antiderivative()
self.write_fundamental_theorem_of_calculus()
self.show_integral_considering_continuum()
self.show_antiderivative_considering_bounds()
def add_graph_and_integral(self):
self.setup_axes()
integral = TexMobject("\\int", "^b", "_a", "f(x)", "\\,dx")
integral.next_to(ORIGIN, LEFT)
integral.to_edge(UP)
integral.highlight_by_tex("a", self.lower_bound_color)
integral.highlight_by_tex("b", self.upper_bound_color)
graph = self.get_graph(
lambda x : -0.01*x*(x-3)*(x-6)*(x-12) + 3,
)
self.add(integral, graph)
self.graph = graph
self.integral = integral
self.bound_labels = VGroup()
self.v_lines = VGroup()
for bound, tex in (self.lower_bound, "a"), (self.upper_bound, "b"):
label = integral.get_part_by_tex(tex).copy()
label.scale(1.5)
label.next_to(self.coords_to_point(bound, 0), DOWN)
v_line = self.get_vertical_line_to_graph(
bound, graph, color = label.get_color()
)
self.bound_labels.add(label)
self.v_lines.add(v_line)
self.add(label, v_line)
def show_f_dx_sum(self):
kwargs = {
"x_min" : self.lower_bound,
"x_max" : self.upper_bound,
"fill_opacity" : 0.75,
"stroke_width" : 0.25,
}
low_opacity = 0.25
start_rect_index = 3
num_shown_sum_steps = 5
last_rect_index = start_rect_index + num_shown_sum_steps + 1
self.rect_list = self.get_riemann_rectangles_list(
self.graph, self.n_riemann_iterations, **kwargs
)
rects = self.rects = self.rect_list[0]
rects.save_state()
start_rect = rects[start_rect_index]
f_brace = Brace(start_rect, LEFT, buff = 0)
dx_brace = Brace(start_rect, DOWN, buff = 0)
f_brace.label = f_brace.get_text("$f(x)$")
dx_brace.label = dx_brace.get_text("$dx$")
flat_rects = self.get_riemann_rectangles(
self.get_graph(lambda x : 0), dx = 0.5, **kwargs
)
self.transform_between_riemann_rects(
flat_rects, rects,
replace_mobject_with_target_in_scene = True,
)
self.play(*[
ApplyMethod(
rect.set_fill, None,
1 if rect is start_rect else low_opacity
)
for rect in rects
])
self.play(*it.chain(
map(GrowFromCenter, [f_brace, dx_brace]),
map(Write, [f_brace.label, dx_brace.label]),
))
self.dither()
for i in range(start_rect_index+1, last_rect_index):
self.play(
rects[i-1].set_fill, None, low_opacity,
rects[i].set_fill, None, 1,
f_brace.scale_to_fit_height, rects[i].get_height(),
f_brace.next_to, rects[i], LEFT, 0,
dx_brace.next_to, rects[i], DOWN, 0,
*[
MaintainPositionRelativeTo(brace.label, brace)
for brace in f_brace, dx_brace
]
)
self.dither()
self.play(*it.chain(
map(FadeOut, [
f_brace, dx_brace,
f_brace.label, dx_brace.label
]),
[rects.set_fill, None, kwargs["fill_opacity"]]
))
def show_rects_approaching_area(self):
for new_rects in self.rect_list:
self.transform_between_riemann_rects(
self.rects, new_rects
)
def write_antiderivative(self):
deriv = TexMobject(
"{d", "F", "\\over\\,", "dx}", "(x)", "=", "f(x)"
)
deriv_F = deriv.get_part_by_tex("F")
deriv.next_to(self.integral, DOWN, MED_LARGE_BUFF)
rhs = TexMobject(*"=F(b)-F(a)")
rhs.highlight_by_tex("a", self.lower_bound_color)
rhs.highlight_by_tex("b", self.upper_bound_color)
rhs.next_to(self.integral, RIGHT)
self.play(Write(deriv))
self.dither(2)
self.play(*it.chain(
[
ReplacementTransform(deriv_F.copy(), part)
for part in rhs.get_parts_by_tex("F")
],
[
Write(VGroup(*rhs.get_parts_by_tex(tex)))
for tex in "=()-"
]
))
for tex in "b", "a":
self.play(ReplacementTransform(
self.integral.get_part_by_tex(tex).copy(),
rhs.get_part_by_tex(tex)
))
self.dither()
self.dither(2)
self.deriv = deriv
self.rhs = rhs
def write_fundamental_theorem_of_calculus(self):
words = TextMobject("""
Fundamental
theorem of
calculus
""")
words.to_edge(RIGHT)
self.play(Write(words, lag_factor = 3))
self.dither()
def show_integral_considering_continuum(self):
self.play(*[
ApplyMethod(mob.set_fill, None, 0.2)
for mob in self.deriv, self.rhs
])
self.play(
self.rects.restore,
run_time = 3,
rate_func = there_and_back
)
self.dither()
for x in range(2):
self.play(*[
ApplyFunction(
lambda m : m.shift(MED_SMALL_BUFF*UP).set_fill(opacity = 1),
rect,
run_time = 3,
rate_func = squish_rate_func(
there_and_back,
alpha, alpha+0.2
)
)
for rect, alpha in zip(
self.rects,
np.linspace(0, 0.8, len(self.rects))
)
])
self.dither()
def show_antiderivative_considering_bounds(self):
self.play(
self.integral.set_fill, None, 0.5,
self.deriv.set_fill, None, 1,
self.rhs.set_fill, None, 1,
)
for label, line in reversed(zip(self.bound_labels, self.v_lines)):
new_line = line.copy().highlight(YELLOW)
label.save_state()
self.play(label.highlight, YELLOW)
self.play(ShowCreation(new_line))
self.play(ShowCreation(line))
self.remove(new_line)
self.play(label.restore)
self.dither()
self.play(self.integral.set_fill, None, 1)
self.dither(3)
class LetsRecap(TeacherStudentsScene):
def construct(self):
self.teacher_says(
"Let's recap",
target_mode = "hesitant",
)
self.change_student_modes(*["happy"]*3)
self.dither(3)
class NegativeArea(GraphScene):
CONFIG = {
"x_axis_label" : "Time",
"y_axis_label" : "Velocity",
"graph_origin" : 1.5*DOWN + 5*LEFT,
"y_min" : -3,
"y_max" : 7,
"small_dx" : 0.01,
"sample_input" : 5,
}
def construct(self):
self.setup_axes()
self.add_graph_and_area()
self.write_negative_area()
self.show_negative_point()
self.show_car_going_backwards()
self.write_v_dt()
self.show_rectangle()
self.write_signed_area()
def add_graph_and_area(self):
graph = self.get_graph(
lambda x : -0.02*(x+1)*(x-3)*(x-7)*(x-10),
x_min = 0,
x_max = 8,
color = VELOCITY_COLOR
)
area = self.get_riemann_rectangles(
graph,
x_min = 0,
x_max = 8,
dx = self.small_dx,
start_color = BLUE_D,
end_color = BLUE_D,
fill_opacity = 0.75,
stroke_width = 0,
)
self .play(
ShowCreation(graph),
FadeIn(
area,
run_time = 2,
submobject_mode = "lagged_start",
)
)
self.graph = graph
self.area = area
def write_negative_area(self):
words = TextMobject("Negative area")
words.highlight(RED)
words.next_to(
self.coords_to_point(7, -2),
RIGHT,
)
arrow = Arrow(words, self.coords_to_point(
self.sample_input, -1,
))
self.play(
Write(words, run_time = 2),
ShowCreation(arrow)
)
self.dither(2)
self.play(*map(FadeOut, [self.area, arrow]))
self.negative_area_words = words
def show_negative_point(self):
v_line = self.get_vertical_line_to_graph(
self.sample_input, self.graph,
color = RED
)
self.play(ShowCreation(v_line))
self.dither()
self.v_line = v_line
def show_car_going_backwards(self):
car = Car()
start_point = 3*RIGHT + 2*UP
end_point = start_point + LEFT
nudged_end_point = end_point + MED_SMALL_BUFF*LEFT
car.move_to(start_point)
arrow = Arrow(RIGHT, LEFT, color = RED)
arrow.next_to(car, UP+LEFT)
arrow.shift(MED_LARGE_BUFF*RIGHT)
self.play(FadeIn(car))
self.play(ShowCreation(arrow))
self.play(MoveCar(
car, end_point,
moving_forward = False,
run_time = 3
))
self.dither()
ghost_car = car.copy().fade()
right_nose_line = self.get_car_nose_line(car)
self.play(ShowCreation(right_nose_line))
self.add(ghost_car)
self.play(MoveCar(
car, nudged_end_point,
moving_forward = False
))
left_nose_line = self.get_car_nose_line(car)
self.play(ShowCreation(left_nose_line))
self.nose_lines = VGroup(left_nose_line, right_nose_line)
self.car = car
self.ghost_car = ghost_car
def write_v_dt(self):
brace = Brace(self.nose_lines, DOWN, buff = 0)
equation = TexMobject("ds", "=", "v(t)", "dt")
equation.next_to(brace, DOWN, SMALL_BUFF, LEFT)
equation.highlight_by_tex("ds", DISTANCE_COLOR)
equation.highlight_by_tex("dt", TIME_COLOR)
negative = TextMobject("Negative")
negative.highlight(RED)
negative.next_to(equation.get_corner(UP+RIGHT), UP, LARGE_BUFF)
ds_arrow, v_arrow = arrows = VGroup(*[
Arrow(
negative.get_bottom(),
equation.get_part_by_tex(tex).get_top(),
color = RED,
)
for tex in "ds", "v(t)"
])
self.play(
GrowFromCenter(brace),
Write(equation)
)
self.dither()
self.play(FadeIn(negative))
self.play(ShowCreation(v_arrow))
self.dither(2)
self.play(ReplacementTransform(
v_arrow.copy(),
ds_arrow
))
self.dither(2)
self.ds_equation = equation
self.negative_word = negative
self.negative_word_arrows = arrows
def show_rectangle(self):
rect_list = self.get_riemann_rectangles_list(
self.graph, x_min = 0, x_max = 8,
n_iterations = 6,
start_color = BLUE_D,
end_color = BLUE_D,
fill_opacity = 0.75,
)
rects = rect_list[0]
rect = rects[len(rects)*self.sample_input//8]
dt_brace = Brace(rect, UP, buff = 0)
v_brace = Brace(rect, LEFT, buff = 0)
dt_label = dt_brace.get_text("$dt$", buff = SMALL_BUFF)
dt_label.highlight(YELLOW)
v_label = v_brace.get_text("$v(t)$", buff = SMALL_BUFF)
v_label.add_background_rectangle()
self.play(FadeOut(self.v_line), FadeIn(rect))
self.play(
GrowFromCenter(dt_brace),
GrowFromCenter(v_brace),
Write(dt_label),
Write(v_label),
)
self.dither(2)
self.play(*it.chain(
[FadeIn(r) for r in rects if r is not rect],
map(FadeOut, [
dt_brace, v_brace, dt_label, v_label
])
))
self.dither()
for new_rects in rect_list[1:]:
self.transform_between_riemann_rects(rects, new_rects)
self.dither()
def write_signed_area(self):
words = TextMobject("``Signed area''")
words.next_to(self.coords_to_point(self.sample_input, 0), UP)
symbols = VGroup(*[
TexMobject(sym).move_to(self.coords_to_point(*coords))
for sym, coords in [
("+", (1, 2)),
("-", (5, -1)),
("+", (7.6, 0.5)),
]
])
self.play(Write(words))
self.play(Write(symbols))
self.dither()
####
def get_car_nose_line(self, car):
line = DashedLine(car.get_top(), car.get_bottom())
line.move_to(car.get_right())
return line
class NextVideo(TeacherStudentsScene):
def construct(self):
series = VideoSeries()
series.to_edge(UP)
next_video = series[8]
integral = TexMobject("\\int")
integral.next_to(next_video, DOWN, LARGE_BUFF)
self.play(FadeIn(series, submobject_mode = "lagged_start"))
self.play(
next_video.highlight, YELLOW,
next_video.shift, next_video.get_height()*DOWN/2,
self.teacher.change_mode, "raise_right_hand"
)
self.play(Write(integral))
self.dither(5)