Files
manim/moser/moser_helpers.py
2015-05-12 14:51:21 -07:00

272 lines
9.1 KiB
Python

import numpy as np
import operator as op
import itertools as it
from constants import *
from image_mobject import *
from region import *
from scene import Scene
from graphs import *
RADIUS = SPACE_HEIGHT - 0.1
CIRCLE_DENSITY = DEFAULT_POINT_DENSITY_1D*RADIUS
MOVIE_PREFIX = "moser/"
RADIANS = np.arange(0, 6, 6.0/7)
N_PASCAL_ROWS = 7
BIG_N_PASCAL_ROWS = 11
############################################
class CircleScene(Scene):
args_list = [
(RADIANS[:x],)
for x in range(1, len(RADIANS)+1)
]
@staticmethod
def args_to_string(*args):
return str(len(args[0])) #Length of radians
def __init__(self, radians, *args, **kwargs):
Scene.__init__(self, *args, **kwargs)
self.radius = RADIUS
self.circle = Circle(density = CIRCLE_DENSITY).scale(self.radius)
self.points = [
(self.radius * np.cos(angle), self.radius * np.sin(angle), 0)
for angle in radians
]
self.dots = [Dot(point) for point in self.points]
self.lines = [Line(p1, p2) for p1, p2 in it.combinations(self.points, 2)]
self.n_equals = tex_mobject(
"n=%d"%len(radians),
size = r"\small"
).shift((-SPACE_WIDTH+1, SPACE_HEIGHT-1.5, 0))
self.add(self.circle, self.n_equals, *self.dots + self.lines)
def generate_intersection_dots(self):
"""
Generates and adds attributes intersection_points and
intersection_dots, but does not yet add them to the scene
"""
self.intersection_points = [
intersection((p[0], p[2]), (p[1], p[3]))
for p in it.combinations(self.points, 4)
]
self.intersection_dots = [
Dot(point) for point in self.intersection_points
]
def chop_lines_at_intersection_points(self):
if not hasattr(self, "intersection_dots"):
self.generate_intersection_dots()
self.remove(*self.lines)
self.lines = []
for point_pair in it.combinations(self.points, 2):
int_points = filter(
lambda p : is_on_line(p, *point_pair),
self.intersection_points
)
points = list(point_pair) + int_points
points = map(lambda p : (p[0], p[1], 0), points)
points.sort(cmp = lambda x,y: cmp(x[0], y[0]))
self.lines += [
Line(points[i], points[i+1])
for i in range(len(points)-1)
]
self.add(*self.lines)
def chop_circle_at_points(self):
self.remove(self.circle)
self.circle_pieces = []
self.smaller_circle_pieces = []
for i in range(len(self.points)):
pp = self.points[i], self.points[(i+1)%len(self.points)]
transform = np.array([
[pp[0][0], pp[1][0], 0],
[pp[0][1], pp[1][1], 0],
[0, 0, 1]
])
circle = deepcopy(self.circle)
smaller_circle = deepcopy(self.circle)
for c in circle, smaller_circle:
c.points = np.dot(
c.points,
np.transpose(np.linalg.inv(transform))
)
c.filter_out(
lambda p : p[0] < 0 or p[1] < 0
)
if c == smaller_circle:
c.filter_out(
lambda p : p[0] > 4*p[1] or p[1] > 4*p[0]
)
c.points = np.dot(
c.points,
np.transpose(transform)
)
self.circle_pieces.append(circle)
self.smaller_circle_pieces.append(smaller_circle)
self.add(*self.circle_pieces)
class GraphScene(Scene):
args_list = [
(CUBE_GRAPH,),
(SAMPLE_GRAPH,),
(OCTOHEDRON_GRAPH,),
]
@staticmethod
def args_to_string(*args):
return args[0]["name"]
def __init__(self, graph, *args, **kwargs):
Scene.__init__(self, *args, **kwargs)
#See CUBE_GRAPH above for format of graph
self.graph = graph
self.points = map(np.array, graph["vertices"])
self.vertices = self.dots = [Dot(p) for p in self.points]
self.edges = [
Line(self.points[i], self.points[j])
for i, j in graph["edges"]
]
self.add(*self.dots + self.edges)
def generate_regions(self):
regions = [
region_from_line_boundary(*[
[
self.points[rc[i]],
self.points[rc[(i+1)%len(rc)]]
]
for i in range(len(rc))
])
for rc in self.graph["region_cycles"]
]
regions[-1].complement()#Outer region painted outwardly...
self.regions = regions
class PascalsTriangleScene(Scene):
args_list = [
(N_PASCAL_ROWS,),
(BIG_N_PASCAL_ROWS,),
]
@staticmethod
def args_to_string(*args):
return str(args[0])
def __init__(self, nrows, *args, **kwargs):
Scene.__init__(self, *args, **kwargs)
self.nrows = nrows
self.diagram_height = 2*SPACE_HEIGHT - 1
self.diagram_width = 1.5*SPACE_WIDTH
self.cell_height = self.diagram_height / nrows
self.cell_width = self.diagram_width / nrows
self.portion_to_fill = 0.7
self.bottom_left = np.array(
(-self.cell_width * nrows / 2.0, -self.cell_height * nrows / 2.0, 0)
)
num_to_num_mob = {}
self.coords_to_mobs = {}
self.coords = [(n, k) for n in range(nrows) for k in range(n+1)]
for n, k in self.coords:
num = choose(n, k)
center = self.coords_to_center(n, k)
if num not in num_to_num_mob:
num_to_num_mob[num] = tex_mobject(str(num))
num_mob = deepcopy(num_to_num_mob[num])
scale_factor = min(
1,
self.portion_to_fill * self.cell_height / num_mob.get_height(),
self.portion_to_fill * self.cell_width / num_mob.get_width(),
)
num_mob.center().scale(scale_factor).shift(center)
if n not in self.coords_to_mobs:
self.coords_to_mobs[n] = {}
self.coords_to_mobs[n][k] = num_mob
self.add(*[self.coords_to_mobs[n][k] for n, k in self.coords])
def coords_to_center(self, n, k):
return self.bottom_left + (
self.cell_width * (k+self.nrows/2.0 - n/2.0),
self.cell_height * (self.nrows - n),
0
)
def generate_n_choose_k_mobs(self):
self.coords_to_n_choose_k = {}
for n, k in self.coords:
nck_mob = tex_mobject(r"{%d \choose %d}"%(n, k))
scale_factor = min(
1,
self.portion_to_fill * self.cell_height / nck_mob.get_height(),
self.portion_to_fill * self.cell_width / nck_mob.get_width(),
)
center = self.coords_to_mobs[n][k].get_center()
nck_mob.center().scale(scale_factor).shift(center)
if n not in self.coords_to_n_choose_k:
self.coords_to_n_choose_k[n] = {}
self.coords_to_n_choose_k[n][k] = nck_mob
def generate_sea_of_zeros(self):
zero = tex_mobject("0")
self.sea_of_zeros = []
for n in range(self.nrows):
for a in range((self.nrows - n)/2 + 1):
for k in (n + a + 1, -a -1):
self.coords.append((n, k))
mob = deepcopy(zero)
mob.shift(self.coords_to_center(n, k))
self.coords_to_mobs[n][k] = mob
self.add(mob)
##################################################
def int_list_to_string(int_list):
return "-".join(map(str, int_list))
def choose(n, r):
if n < r: return 0
if r == 0: return 1
denom = reduce(op.mul, xrange(1, r+1), 1)
numer = reduce(op.mul, xrange(n, n-r, -1), 1)
return numer//denom
def moser_function(n):
return choose(n, 4) + choose(n, 2) + 1
def is_on_line(p0, p1, p2, threshold = 0.01):
"""
Returns true of p0 is on the line between p1 and p2
"""
p0, p1, p2 = map(lambda tup : np.array(tup[:2]), [p0, p1, p2])
p1 -= p0
p2 -= p0
return abs((p1[0] / p1[1]) - (p2[0] / p2[1])) < threshold
def intersection(line1, line2):
"""
A "line" should come in the form [(x0, y0), (x1, y1)] for two
points it runs through
"""
p0, p1, p2, p3 = map(
lambda tup : np.array(tup[:2]),
[line1[0], line1[1], line2[0], line2[1]]
)
p1, p2, p3 = map(lambda x : x - p0, [p1, p2, p3])
transform = np.zeros((2, 2))
transform[:,0], transform[:,1] = p1, p2
if np.linalg.det(transform) == 0: return
inv = np.linalg.inv(transform)
new_p3 = np.dot(inv, p3.reshape((2, 1)))
#Where does line connecting (0, 1) to new_p3 hit x axis
x_intercept = new_p3[0] / (1 - new_p3[1])
result = np.dot(transform, [[x_intercept], [0]])
result = result.reshape((2,)) + p0
return result