Files
manim/animation.py
Grant Sanderson 1f93da1a06 moser moser
2015-05-17 15:08:51 -07:00

391 lines
13 KiB
Python

from PIL import Image
from colour import Color
import numpy as np
import warnings
import time
import os
import copy
import progressbar
import inspect
from images2gif import writeGif
from helpers import *
from constants import *
from mobject import Mobject, Point
class Animation(object):
def __init__(self,
mobject,
run_time = DEFAULT_ANIMATION_RUN_TIME,
alpha_func = high_inflection_0_to_1,
name = None):
if isinstance(mobject, type) and issubclass(mobject, Mobject):
self.mobject = mobject()
elif isinstance(mobject, Mobject):
self.mobject = mobject
else:
raise Exception("Invalid mobject parameter, must be \
subclass or instance of Mobject")
self.starting_mobject = copy.deepcopy(self.mobject)
self.reference_mobjects = [self.starting_mobject]
self.alpha_func = alpha_func or (lambda x : x)
self.run_time = run_time
#TODO, Adress the idea of filtering the animation
self.filter_functions = []
self.restricted_height = SPACE_HEIGHT
self.restricted_width = SPACE_WIDTH
self.spacial_center = np.zeros(3)
self.name = name or self.__class__.__name__ + str(self.mobject)
def __str__(self):
return self.name
def get_points_and_rgbs(self):
"""
It is the responsibility of this class to only emit points within
the space. Returns np array of points and corresponding np array
of rgbs
"""
#TODO, I don't think this should be necessary. This should happen
#under the individual mobjects.
points = self.mobject.points
rgbs = self.mobject.rgbs
#Filters out what is out of bounds.
admissibles = (abs(points[:,0]) < self.restricted_width) * \
(abs(points[:,1]) < self.restricted_height)
for filter_function in self.filter_functions:
admissibles *= ~filter_function(points)
if any(self.spacial_center):
points += self.spacial_center
#Filter out points pushed off the edge
admissibles *= (abs(points[:,0]) < SPACE_WIDTH) * \
(abs(points[:,1]) < SPACE_HEIGHT)
if rgbs.shape[0] < points.shape[0]:
#TODO, this shouldn't be necessary, find what's happening.
points = points[:rgbs.shape[0], :]
admissibles = admissibles[:rgbs.shape[0]]
return points[admissibles, :], rgbs[admissibles, :]
def update(self, alpha):
if alpha < 0:
alpha = 0
if alpha > 1:
alpha = 1
self.update_mobject(self.alpha_func(alpha))
def filter_out(self, *filter_functions):
self.filter_functions += filter_functions
return self
def restrict_height(self, height):
self.restricted_height = min(height, SPACE_HEIGHT)
return self
def restrict_width(self, width):
self.restricted_width = min(width, SPACE_WIDTH)
return self
def shift(self, vector):
self.spacial_center += vector
return self
def set_run_time(self, time):
self.run_time = time
return self
def set_alpha_func(self, alpha_func):
if alpha_func is None:
alpha_func = lambda x : x
self.alpha_func = alpha_func
return self
def set_name(self, name):
self.name = name
return self
# def drag_pixels(self):
# self.frames = drag_pixels(self.get_frames())
# return self
# def reverse(self):
# self.get_frames().reverse()
# self.name = 'Reversed' + str(self)
# return self
def update_mobject(self, alpha):
#Typically ipmlemented by subclass
pass
def clean_up(self):
pass
###### Concrete Animation ########
class Rotating(Animation):
def __init__(self,
mobject,
axis = None,
axes = [[0, 0, 1], [0, 1, 0]],
radians = 2 * np.pi,
run_time = 20.0,
alpha_func = None,
*args, **kwargs):
Animation.__init__(
self, mobject,
run_time = run_time,
alpha_func = alpha_func,
*args, **kwargs
)
self.axes = [axis] if axis else axes
self.radians = radians
def update_mobject(self, alpha):
self.mobject.points = self.starting_mobject.points
for axis in self.axes:
self.mobject.rotate(
self.radians * alpha,
axis
)
class RotationAsTransform(Rotating):
def __init__(self, mobject, radians, axis = (0, 0, 1), axes = None,
run_time = DEFAULT_ANIMATION_RUN_TIME,
alpha_func = high_inflection_0_to_1,
*args, **kwargs):
Rotating.__init__(
self,
mobject,
axis = axis,
axes = axes,
run_time = run_time,
radians = radians,
alpha_func = alpha_func,
)
class FadeOut(Animation):
def update_mobject(self, alpha):
self.mobject.rgbs = self.starting_mobject.rgbs * (1 - alpha)
class FadeIn(Animation):
def update_mobject(self, alpha):
self.mobject.rgbs = self.starting_mobject.rgbs * alpha
if self.mobject.points.shape != self.starting_mobject.points.shape:
self.mobject.points = self.starting_mobject.points
#TODO, Why do you need to do this? Shouldn't points always align?
class Transform(Animation):
def __init__(self, mobject1, mobject2,
run_time = DEFAULT_TRANSFORM_RUN_TIME,
black_out_extra_points = True,
*args, **kwargs):
count1, count2 = mobject1.get_num_points(), mobject2.get_num_points()
if count2 == 0:
mobject2 = Point((SPACE_WIDTH, SPACE_HEIGHT, 0))
count2 = mobject2.get_num_points()
Mobject.align_data(mobject1, mobject2)
Animation.__init__(self, mobject1, run_time = run_time, *args, **kwargs)
self.ending_mobject = mobject2
self.mobject.SHOULD_BUFF_POINTS = \
mobject1.SHOULD_BUFF_POINTS and mobject2.SHOULD_BUFF_POINTS
self.reference_mobjects.append(mobject2)
self.name += "To" + str(mobject2)
if black_out_extra_points and count2 < count1:
#Ensure redundant pixels fade to black
indices = np.arange(
0, count1-1, float(count1) / count2
).astype('int')
temp = np.zeros(mobject2.points.shape)
temp[indices] = mobject2.rgbs[indices]
mobject2.rgbs = temp
self.non_redundant_m2_indices = indices
def update_mobject(self, alpha):
Mobject.interpolate(
self.starting_mobject,
self.ending_mobject,
self.mobject,
alpha
)
def clean_up(self):
if hasattr(self, "non_redundant_m2_indices"):
#Reduce mobject (which has become identical to mobject2), as
#well as mobject2 itself
for mobject in [self.mobject, self.ending_mobject]:
for attr in ['points', 'rgbs']:
setattr(
mobject, attr,
getattr(
self.ending_mobject,
attr
)[self.non_redundant_m2_indices]
)
class SemiCircleTransform(Transform):
def update_mobject(self, alpha):
sm, em = self.starting_mobject, self.ending_mobject
midpoints = (sm.points + em.points) / 2
angle = alpha * np.pi
rotation_matrix = np.matrix([
[np.cos(angle), np.sin(angle), 0],
[-np.sin(angle), np.cos(angle), 0],
[0, 0, 1],
])
self.mobject.points = np.dot(
sm.points - midpoints,
np.transpose(rotation_matrix)
) + midpoints
self.mobject.rgbs = (1-alpha)*sm.rgbs + alpha*em.rgbs
class FadeToColor(Transform):
def __init__(self, mobject, color, *args, **kwargs):
target = copy.deepcopy(mobject).highlight(color)
Transform.__init__(self, mobject, target, *args, **kwargs)
class Highlight(FadeToColor):
def __init__(self, mobject, color = "red",
run_time = DEFAULT_ANIMATION_RUN_TIME,
alpha_func = there_and_back, *args, **kwargs):
FadeToColor.__init__(
self, mobject, color,
run_time = run_time,
alpha_func = alpha_func,
*args, **kwargs
)
class ScaleInPlace(Transform):
def __init__(self, mobject, scale_factor, *args, **kwargs):
target = copy.deepcopy(mobject)
center = mobject.get_center()
target.shift(-center).scale(scale_factor).shift(center)
Transform.__init__(self, mobject, target, *args, **kwargs)
class ApplyMethod(Transform):
def __init__(self, method, mobject, *args, **kwargs):
"""
Method is a method of Mobject
"""
method_args = ()
if isinstance(method, tuple):
method, method_args = method[0], method[1:]
if not inspect.ismethod(method):
raise "Not a valid Mobject method"
Transform.__init__(
self,
mobject,
method(copy.deepcopy(mobject), *method_args),
*args, **kwargs
)
class ApplyFunction(Transform):
def __init__(self, function, mobject, run_time = DEFAULT_ANIMATION_RUN_TIME,
*args, **kwargs):
map_image = copy.deepcopy(mobject)
map_image.points = np.array(map(function, map_image.points))
Transform.__init__(self, mobject, map_image, run_time = run_time,
*args, **kwargs)
self.name = "".join([
"Apply",
"".join([s.capitalize() for s in function.__name__.split("_")]),
"To" + str(mobject)
])
class ComplexFunction(ApplyFunction):
def __init__(self, function, *args, **kwargs):
def point_map(point):
x, y, z = point
c = np.complex(x, y)
c = function(c)
return c.real, c.imag, z
if len(args) > 0:
args = list(args)
mobject = args.pop(0)
elif "mobject" in kwargs:
mobject = kwargs.pop("mobject")
else:
mobject = Grid()
ApplyFunction.__init__(self, point_map, mobject, *args, **kwargs)
self.name = "ComplexFunction" + to_cammel_case(function.__name__)
#Todo, abstract away function naming'
class Homotopy(Animation):
def __init__(self, homotopy, *args, **kwargs):
"""
Homotopy a function from (x, y, z, t) to (x', y', z')
"""
self.homotopy = homotopy
Animation.__init__(self, *args, **kwargs)
def update_mobject(self, alpha):
self.mobject.points = np.array([
self.homotopy((x, y, z, alpha))
for x, y, z in self.starting_mobject.points
])
class ComplexHomotopy(Homotopy):
def __init__(self, complex_homotopy, *args, **kwargs):
"""
Complex Hootopy a function (z, t) to z'
"""
def homotopy((x, y, z, t)):
c = complex_homotopy((complex(x, y), t))
return (c.real, c.imag, z)
if len(args) > 0:
args = list(args)
mobject = args.pop(0)
elif "mobject" in kwargs:
mobject = kwargs["mobject"]
else:
mobject = Grid()
Homotopy.__init__(self, homotopy, mobject, *args, **kwargs)
self.name = "ComplexHomotopy" + \
to_cammel_case(complex_homotopy.__name__)
class ShowCreation(Animation):
def update_mobject(self, alpha):
#TODO, shoudl I make this more efficient?
new_num_points = int(alpha * self.starting_mobject.points.shape[0])
for attr in ["points", "rgbs"]:
setattr(
self.mobject,
attr,
getattr(self.starting_mobject, attr)[:new_num_points, :]
)
class Flash(Animation):
def __init__(self, mobject, color = "white", slow_factor = 0.01,
run_time = 0.1, alpha_func = None,
*args, **kwargs):
Animation.__init__(self, mobject, run_time = run_time,
alpha_func = alpha_func,
*args, **kwargs)
self.intermediate = Mobject(color = color)
self.intermediate.add_points([
point + (x, y, 0)
for point in self.mobject.points
for x in [-1, 1]
for y in [-1, 1]
])
self.reference_mobjects.append(self.intermediate)
self.slow_factor = slow_factor
def update_mobject(self, alpha):
#Makes alpha go from 0 to slow_factor to 0 instead of 0 to 1
alpha = self.slow_factor * (1.0 - 4 * (alpha - 0.5)**2)
Mobject.interpolate(
self.starting_mobject,
self.intermediate,
self.mobject,
alpha
)