from __future__ import annotations from abc import ABC, abstractmethod import itertools as it import re from scipy.optimize import linear_sum_assignment from scipy.spatial.distance import cdist from manimlib.constants import WHITE from manimlib.logger import log from manimlib.mobject.svg.svg_mobject import SVGMobject from manimlib.mobject.types.vectorized_mobject import VGroup from manimlib.utils.color import color_to_rgb from manimlib.utils.color import rgb_to_hex from manimlib.utils.config_ops import digest_config from typing import TYPE_CHECKING if TYPE_CHECKING: from colour import Color from typing import Iterable, TypeVar, Union ManimColor = Union[str, Color] Span = tuple[int, int] Selector = Union[ str, re.Pattern, tuple[Union[int, None], Union[int, None]], Iterable[Union[ str, re.Pattern, tuple[Union[int, None], Union[int, None]] ]] ] T = TypeVar("T") class StringMobject(SVGMobject, ABC): """ An abstract base class for `MTex` and `MarkupText` This class aims to optimize the logic of "slicing submobjects via substrings". This could be much clearer and more user-friendly than slicing through numerical indices explicitly. Users are expected to specify substrings in `isolate` parameter if they want to do anything with their corresponding submobjects. `isolate` parameter can be either a string, a `re.Pattern` object, or a 2-tuple containing integers or None, or a collection of the above. Note, substrings specified cannot *partly* overlap with each other. Each instance of `StringMobject` generates 2 svg files. The additional one is generated with some color commands inserted, so that each submobject of the original `SVGMobject` will be labelled by the color of its paired submobject from the additional `SVGMobject`. """ CONFIG = { "height": None, "stroke_width": 0, "stroke_color": WHITE, "path_string_config": { "should_subdivide_sharp_curves": True, "should_remove_null_curves": True, }, "base_color": WHITE, "isolate": (), } def __init__(self, string: str, **kwargs): self.string = string digest_config(self, kwargs) if self.base_color is None: self.base_color = WHITE self.base_color_hex = self.color_to_hex(self.base_color) self.full_len = len(self.string) self.parse() super().__init__(**kwargs) self.labels = [submob.label for submob in self.submobjects] def get_file_path(self) -> str: original_content = self.get_content(is_labelled=False) return self.get_file_path_by_content(original_content) @abstractmethod def get_file_path_by_content(self, content: str) -> str: return "" def generate_mobject(self) -> None: super().generate_mobject() labels_count = len(self.labelled_spans) if not labels_count: for submob in self.submobjects: submob.label = -1 return labelled_content = self.get_content(is_labelled=True) file_path = self.get_file_path_by_content(labelled_content) labelled_svg = SVGMobject(file_path) if len(self.submobjects) != len(labelled_svg.submobjects): log.warning( "Cannot align submobjects of the labelled svg " "to the original svg. Skip the labelling process." ) for submob in self.submobjects: submob.label = -1 return self.rearrange_submobjects_by_positions(labelled_svg) unrecognizable_colors = [] for submob, labelled_svg_submob in zip( self.submobjects, labelled_svg.submobjects ): color_int = self.hex_to_int(self.color_to_hex( labelled_svg_submob.get_fill_color() )) if color_int > labels_count: unrecognizable_colors.append(color_int) color_int = 0 submob.label = color_int - 1 if unrecognizable_colors: log.warning( "Unrecognizable color labels detected (%s, etc). " "The result could be unexpected.", self.int_to_hex(unrecognizable_colors[0]) ) def rearrange_submobjects_by_positions( self, labelled_svg: SVGMobject ) -> None: # Rearrange submobjects of `labelled_svg` so that # each submobject is labelled by the nearest one of `labelled_svg`. # The correctness cannot be ensured, since the svg may # change significantly after inserting color commands. if not labelled_svg.submobjects: return bb_0 = self.get_bounding_box() bb_1 = labelled_svg.get_bounding_box() scale_factor = abs((bb_0[2] - bb_0[0]) / (bb_1[2] - bb_1[0])) labelled_svg.move_to(self).scale(scale_factor) distance_matrix = cdist( [submob.get_center() for submob in self.submobjects], [submob.get_center() for submob in labelled_svg.submobjects] ) _, indices = linear_sum_assignment(distance_matrix) labelled_svg.set_submobjects([ labelled_svg.submobjects[index] for index in indices ]) # Toolkits def find_spans_by_selector(self, selector: Selector) -> list[Span]: def find_spans_by_single_selector(sel): if isinstance(sel, str): return [ match_obj.span() for match_obj in re.finditer(re.escape(sel), self.string) ] if isinstance(sel, re.Pattern): return [ match_obj.span() for match_obj in sel.finditer(self.string) ] if isinstance(sel, tuple) and len(sel) == 2 and all( isinstance(index, int) or index is None for index in sel ): l = self.full_len span = tuple( default_index if index is None else min(index, l) if index >= 0 else max(index + l, 0) for index, default_index in zip(sel, (0, l)) ) return [span] return None result = find_spans_by_single_selector(selector) if result is None: result = [] for sel in selector: spans = find_spans_by_single_selector(sel) if spans is None: raise TypeError(f"Invalid selector: '{sel}'") result.extend(spans) return list(filter(lambda span: span[0] < span[1], result)) def get_substr(self, span: Span) -> str: return self.string[slice(*span)] @staticmethod def get_neighbouring_pairs(vals: Iterable[T]) -> list[tuple[T, T]]: val_list = list(vals) return list(zip(val_list[:-1], val_list[1:])) @staticmethod def join_strs(strs, inserted_strs): return "".join(it.chain(*zip(strs, (*inserted_strs, "")))) @staticmethod def span_contains(span_0: Span, span_1: Span) -> bool: return span_0[0] <= span_1[0] and span_0[1] >= span_1[1] @staticmethod def get_complement_spans( universal_span: Span, interval_spans: list[Span] ) -> list[Span]: if not interval_spans: return [universal_span] span_ends, span_starts = zip(*interval_spans) return list(zip( (universal_span[0], *span_starts), (*span_ends, universal_span[1]) )) @staticmethod def color_to_hex(color: ManimColor) -> str: return rgb_to_hex(color_to_rgb(color)) @staticmethod def hex_to_int(rgb_hex: str) -> int: return int(rgb_hex[1:], 16) @staticmethod def int_to_hex(rgb_int: int) -> str: return f"#{rgb_int:06x}".upper() # Parsing def parse(self) -> None: command_matches = list(re.finditer( self.get_command_pattern(), self.string, re.X | re.S )) command_flags = [ self.get_command_flag(command_match) for command_match in command_matches ] command_match_pairs = self.get_command_match_pairs( command_matches, command_flags ) all_specified_items = [ *self.get_internal_specified_items(command_match_pairs), *self.get_external_specified_items(), *[ (span, {}) for span in self.find_spans_by_selector(self.isolate) ] ] command_spans = [match_obj.span() for match_obj in command_matches] region_spans = self.get_complement_spans( (0, self.full_len), command_spans ) def get_region_index(index): for region_index, (start, end) in enumerate(region_spans): if start <= index <= end: return region_index return -1 labelled_spans = [] attr_dicts = [] for span, attr_dict in all_specified_items: region_range = tuple(get_region_index(index) for index in span) if -1 in region_range: continue levels = list(it.accumulate(command_flags[slice(*region_range)])) if levels and any([ *(level < 0 for level in levels), levels[-1] > 0 ]): log.warning( "Cannot handle substring '%s', ignored", self.get_substr(span) ) continue overlapped_spans = [ s for s in labelled_spans if any([ s[0] < span[0] < s[1] < span[1], span[0] < s[0] < span[1] < s[1] ]) ] if overlapped_spans: log.warning( "Substring '%s' partly overlaps with '%s', ignored", self.get_substr(span), self.get_substr(overlapped_spans[0]) ) continue labelled_spans.append(span) attr_dicts.append(attr_dict) insertion_items = [ label_flag_pair for _, label_flag_pair in sorted(it.chain(*( sorted([ (span[::flag], (label, flag)) for label, span in list(enumerate(labelled_spans))[::flag] ], key=lambda t: (t[0][0], -t[0][1])) for flag in (-1, 1) )), key=lambda t: t[0][0]) ] insertion_interval_items = [ tuple(zip(*pair)) for pair in self.get_neighbouring_pairs([ (index, get_region_index(index)) for index in [0, *( labelled_spans[label][flag < 0] for label, flag in insertion_items ), self.full_len] ]) ] def get_replaced_pieces(replace_func): return [ self.join_strs([ self.get_substr(s) for s in self.get_complement_spans( span, command_spans[slice(*region_range)] ) ], [ replace_func(command_match) for command_match in command_matches[slice(*region_range)] ]) for span, region_range in insertion_interval_items ] self.labelled_spans = labelled_spans self.attr_dicts = attr_dicts self.insertion_items = insertion_items self.content_pieces = get_replaced_pieces(self.replace_for_content) self.matching_pieces = get_replaced_pieces(self.replace_for_matching) @staticmethod @abstractmethod def get_command_pattern() -> str: return r"(?!)" @staticmethod @abstractmethod def get_command_flag(match_obj: re.Match) -> int: return 0 @staticmethod @abstractmethod def replace_for_content(match_obj: re.Match) -> str: return "" @staticmethod @abstractmethod def replace_for_matching(match_obj: re.Match) -> str: return "" @staticmethod @abstractmethod def get_internal_specified_items( command_match_pairs: list[tuple[re.Match, re.Match]] ) -> list[tuple[Span, dict[str, str]]]: return [] @abstractmethod def get_external_specified_items(self) -> list[tuple[Span, dict[str, str]]]: return [] @staticmethod @abstractmethod def get_command_string( attr_dict: dict[str, str], is_end: bool, label_hex: str | None ) -> str: return "" @abstractmethod def get_content_prefix_and_suffix( self, is_labelled: bool ) -> tuple[str, str]: return "", "" @staticmethod def get_command_match_pairs( command_matches: list[re.Match], command_flags: list[int] ) -> list[tuple[re.Match, re.Match]]: result = [] start_cmd_matches_stack = [] for cmd_match, command_flag in zip(command_matches, command_flags): if command_flag == 1: start_cmd_matches_stack.append(cmd_match) elif command_flag == -1: if not start_cmd_matches_stack: raise ValueError("Missing open command") start_cmd_match = start_cmd_matches_stack.pop() result.append( (start_cmd_match, cmd_match) ) if start_cmd_matches_stack: raise ValueError("Missing close command") return result def get_content(self, is_labelled: bool) -> str: insertion_strings = [ self.get_command_string( self.attr_dicts[label], is_end=flag < 0, label_hex=self.int_to_hex(label + 1) if is_labelled else None ) for label, flag in self.insertion_items ] prefix, suffix = self.get_content_prefix_and_suffix( is_labelled=is_labelled ) return "".join([ prefix, self.join_strs(self.content_pieces, insertion_strings), suffix ]) def get_group_substrs(self, group_labels: list[int]) -> list[str]: if not group_labels: return [] insertion_items = self.insertion_items def get_index(label, flag): if label == -1: return 0 if flag == 1 else len(insertion_items) + 1 return insertion_items.index((label, flag)) + 1 def get_labelled_span(label): if label == -1: return (0, self.full_len) return self.labelled_spans[label] def label_contains(label_0, label_1): return self.span_contains( get_labelled_span(label_0), get_labelled_span(label_1) ) piece_ranges = self.get_complement_spans( (get_index(group_labels[0], 1), get_index(group_labels[-1], -1)), [ ( get_index(next_label, 1) if label_contains(prev_label, next_label) else get_index(prev_label, -1), get_index(prev_label, -1) if label_contains(next_label, prev_label) else get_index(next_label, 1) ) for prev_label, next_label in self.get_neighbouring_pairs( group_labels ) ] ) return [ re.sub(r"\s+", "", "".join( self.matching_pieces[slice(*piece_range)] )) for piece_range in piece_ranges ] # Selector def get_submob_indices_list_by_span( self, arbitrary_span: Span ) -> list[int]: return [ submob_index for submob_index, label in enumerate(self.labels) if label != -1 and self.span_contains( arbitrary_span, self.labelled_spans[label] ) ] def get_specified_part_items(self) -> list[tuple[str, list[int]]]: return [ ( self.get_substr(span), self.get_submob_indices_list_by_span(span) ) for span in self.labelled_spans ] def get_group_part_items(self) -> list[tuple[str, list[int]]]: if not self.labels: return [] range_lens, group_labels = zip(*( (len(list(grouper)), val) for val, grouper in it.groupby(self.labels) )) submob_indices_lists = [ list(range(*submob_range)) for submob_range in self.get_neighbouring_pairs( [0, *it.accumulate(range_lens)] ) ] group_substrs = self.get_group_substrs(list(group_labels)) return list(zip(group_substrs, submob_indices_lists)) def get_submob_indices_lists_by_selector( self, selector: Selector ) -> list[list[int]]: return list(filter( lambda indices_list: indices_list, [ self.get_submob_indices_list_by_span(span) for span in self.find_spans_by_selector(selector) ] )) def build_parts_from_indices_lists( self, indices_lists: list[list[int]] ) -> VGroup: return VGroup(*[ VGroup(*[ self.submobjects[submob_index] for submob_index in indices_list ]) for indices_list in indices_lists ]) def build_groups(self) -> VGroup: return self.build_parts_from_indices_lists([ indices_list for _, indices_list in self.get_group_part_items() ]) def select_parts(self, selector: Selector) -> VGroup: return self.build_parts_from_indices_lists( self.get_submob_indices_lists_by_selector(selector) ) def select_part(self, selector: Selector, index: int = 0) -> VGroup: return self.select_parts(selector)[index] def set_parts_color(self, selector: Selector, color: ManimColor): self.select_parts(selector).set_color(color) return self def set_parts_color_by_dict(self, color_map: dict[Selector, ManimColor]): for selector, color in color_map.items(): self.set_parts_color(selector, color) return self def get_string(self) -> str: return self.string