from manimlib.constants import * from manimlib.mobject.types.vectorized_mobject import VMobject from manimlib.utils.config_ops import digest_config from manimlib.utils.space_ops import get_norm class ParametricFunction(VMobject): CONFIG = { "t_min": 0, "t_max": 1, "step_size": 0.2, "min_samples": 8, "dt": 1e-8, # TODO, automatically figure out discontinuities "discontinuities": [], } def __init__(self, function=None, **kwargs): # either get a function from __init__ or from CONFIG self.function = function or self.function VMobject.__init__(self, **kwargs) def get_function(self): return self.function def get_point_from_function(self, t): return self.function(t) def init_points(self): t_min, t_max = self.t_min, self.t_max dt = self.dt discontinuities = filter( lambda t: t_min <= t <= t_max, self.discontinuities ) discontinuities = np.array(list(discontinuities)) boundary_times = [ self.t_min, self.t_max, *(discontinuities - dt), *(discontinuities + dt), ] boundary_times.sort() for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]): # Get an initial sample of points t_range = list(np.linspace(t1, t2, self.min_samples + 1)) samples = [self.function(t) for t in t_range] # Take more samples based on the distances between them norms = [get_norm(p2 - p1) for p1, p2 in zip(samples, samples[1:])] full_t_range = [t1] for s1, s2, norm in zip(t_range, t_range[1:], norms): n_inserts = int(norm / self.step_size) full_t_range += list(np.linspace(s1, s2, n_inserts + 1)[1:]) points = np.array([self.function(t) for t in full_t_range]) valid_indices = np.isfinite(points).all(1) points = points[valid_indices] if len(points) > 0: self.start_new_path(points[0]) self.add_points_as_corners(points[1:]) self.make_smooth() return self class FunctionGraph(ParametricFunction): CONFIG = { "color": YELLOW, "x_min": -FRAME_X_RADIUS, "x_max": FRAME_X_RADIUS, } def __init__(self, function, **kwargs): digest_config(self, kwargs) self.parametric_function = \ lambda t: np.array([t, function(t), 0]) ParametricFunction.__init__( self, self.parametric_function, t_min=self.x_min, t_max=self.x_max, **kwargs ) self.function = function def get_function(self): return self.function def get_point_from_function(self, x): return self.parametric_function(x)