""" network.py ~~~~~~~~~~ A module to implement the stochastic gradient descent learning algorithm for a feedforward neural network. Gradients are calculated using backpropagation. Note that I have focused on making the code simple, easily readable, and easily modifiable. It is not optimized, and omits many desirable features. """ #### Libraries # Standard library import os import pickle import random # Third-party libraries import numpy as np from PIL import Image from nn.mnist_loader import load_data_wrapper # from utils.space_ops import get_norm NN_DIRECTORY = os.path.dirname(os.path.realpath(__file__)) # PRETRAINED_DATA_FILE = os.path.join(NN_DIRECTORY, "pretrained_weights_and_biases_80") # PRETRAINED_DATA_FILE = os.path.join(NN_DIRECTORY, "pretrained_weights_and_biases_ReLU") PRETRAINED_DATA_FILE = os.path.join(NN_DIRECTORY, "pretrained_weights_and_biases") IMAGE_MAP_DATA_FILE = os.path.join(NN_DIRECTORY, "image_map") # PRETRAINED_DATA_FILE = "/Users/grant/cs/manim/nn/pretrained_weights_and_biases_on_zero" # DEFAULT_LAYER_SIZES = [28**2, 80, 10] DEFAULT_LAYER_SIZES = [28**2, 16, 16, 10] try: xrange # Python 2 except NameError: xrange = range # Python 3 class Network(object): def __init__(self, sizes, non_linearity = "sigmoid"): """The list ``sizes`` contains the number of neurons in the respective layers of the network. For example, if the list was [2, 3, 1] then it would be a three-layer network, with the first layer containing 2 neurons, the second layer 3 neurons, and the third layer 1 neuron. The biases and weights for the network are initialized randomly, using a Gaussian distribution with mean 0, and variance 1. Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers.""" self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] if non_linearity == "sigmoid": self.non_linearity = sigmoid self.d_non_linearity = sigmoid_prime elif non_linearity == "ReLU": self.non_linearity = ReLU self.d_non_linearity = ReLU_prime else: raise Exception("Invalid non_linearity") def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = self.non_linearity(np.dot(w, a)+b) return a def get_activation_of_all_layers(self, input_a, n_layers = None): if n_layers is None: n_layers = self.num_layers activations = [input_a.reshape((input_a.size, 1))] for bias, weight in zip(self.biases, self.weights)[:n_layers]: last_a = activations[-1] new_a = self.non_linearity(np.dot(weight, last_a) + bias) new_a = new_a.reshape((new_a.size, 1)) activations.append(new_a) return activations def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): """Train the neural network using mini-batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs. The other non-optional parameters are self-explanatory. If ``test_data`` is provided then the network will be evaluated against the test data after each epoch, and partial progress printed out. This is useful for tracking progress, but slows things down substantially.""" if test_data: n_test = len(test_data) n = len(training_data) for j in range(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print("Epoch {0}: {1} / {2}".format( j, self.evaluate(test_data), n_test)) else: print("Epoch {0} complete".format(j)) def update_mini_batch(self, mini_batch, eta): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta`` is the learning rate.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y): """Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. ``nabla_b`` and ``nabla_w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = self.non_linearity(z) activations.append(activation) # backward pass delta = self.cost_derivative(activations[-1], y) * \ self.d_non_linearity(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # Note that the variable l in the loop below is used a little # differently to the notation in Chapter 2 of the book. Here, # l = 1 means the last layer of neurons, l = 2 is the # second-last layer, and so on. It's a renumbering of the # scheme in the book, used here to take advantage of the fact # that Python can use negative indices in lists. for l in range(2, self.num_layers): z = zs[-l] sp = self.d_non_linearity(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_b, nabla_w) def evaluate(self, test_data): """Return the number of test inputs for which the neural network outputs the correct result. Note that the neural network's output is assumed to be the index of whichever neuron in the final layer has the highest activation.""" test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results) def cost_derivative(self, output_activations, y): """Return the vector of partial derivatives \\partial C_x / \\partial a for the output activations.""" return (output_activations-y) #### Miscellaneous functions def sigmoid(z): """The sigmoid function.""" return 1.0/(1.0+np.exp(-z)) def sigmoid_prime(z): """Derivative of the sigmoid function.""" return sigmoid(z)*(1-sigmoid(z)) def sigmoid_inverse(z): # z = 0.998*z + 0.001 assert(np.max(z) <= 1.0 and np.min(z) >= 0.0) z = 0.998*z + 0.001 return np.log(np.true_divide( 1.0, (np.true_divide(1.0, z) - 1) )) def ReLU(z): result = np.array(z) result[result < 0] = 0 return result def ReLU_prime(z): return (np.array(z) > 0).astype('int') def get_pretrained_network(): data_file = open(PRETRAINED_DATA_FILE, 'rb') weights, biases = pickle.load(data_file, encoding='latin1') sizes = [w.shape[1] for w in weights] sizes.append(weights[-1].shape[0]) network = Network(sizes) network.weights = weights network.biases = biases return network def save_pretrained_network(epochs = 30, mini_batch_size = 10, eta = 3.0): network = Network(sizes = DEFAULT_LAYER_SIZES) training_data, validation_data, test_data = load_data_wrapper() network.SGD(training_data, epochs, mini_batch_size, eta) weights_and_biases = (network.weights, network.biases) data_file = open(PRETRAINED_DATA_FILE, mode = 'w') pickle.dump(weights_and_biases, data_file) data_file.close() def test_network(): network = get_pretrained_network() training_data, validation_data, test_data = load_data_wrapper() n_right, n_wrong = 0, 0 for test_in, test_out in test_data: if np.argmax(network.feedforward(test_in)) == test_out: n_right += 1 else: n_wrong += 1 print((n_right, n_wrong, float(n_right)/(n_right + n_wrong))) def layer_to_image_array(layer): w = int(np.ceil(np.sqrt(len(layer)))) if len(layer) < w**2: layer = np.append(layer, np.zeros(w**2 - len(layer))) layer = layer.reshape((w, w)) # return Image.fromarray((255*layer).astype('uint8')) return (255*layer).astype('int') def maximizing_input(network, layer_index, layer_vect, n_steps = 100, seed_guess = None): pre_sig_layer_vect = sigmoid_inverse(layer_vect) weights, biases = network.weights, network.biases # guess = np.random.random(weights[0].shape[1]) if seed_guess is not None: pre_sig_guess = sigmoid_inverse(seed_guess.flatten()) else: pre_sig_guess = np.random.randn(weights[0].shape[1]) norms = [] for step in range(n_steps): activations = network.get_activation_of_all_layers( sigmoid(pre_sig_guess), layer_index ) jacobian = np.diag(sigmoid_prime(pre_sig_guess).flatten()) for W, a, b in zip(weights, activations, biases): jacobian = np.dot(W, jacobian) a = a.reshape((a.size, 1)) sp = sigmoid_prime(np.dot(W, a) + b) jacobian = np.dot(np.diag(sp.flatten()), jacobian) gradient = np.dot( np.array(layer_vect).reshape((1, len(layer_vect))), jacobian ).flatten() norm = get_norm(gradient) if norm == 0: break norms.append(norm) old_pre_sig_guess = np.array(pre_sig_guess) pre_sig_guess += 0.1*gradient print(get_norm(old_pre_sig_guess - pre_sig_guess)) print("") return sigmoid(pre_sig_guess) def save_organized_images(n_images_per_number = 10): training_data, validation_data, test_data = load_data_wrapper() image_map = dict([(k, []) for k in range(10)]) for im, output_arr in training_data: if min(list(map(len, list(image_map.values())))) >= n_images_per_number: break value = int(np.argmax(output_arr)) if len(image_map[value]) >= n_images_per_number: continue image_map[value].append(im) data_file = open(IMAGE_MAP_DATA_FILE, mode = 'wb') pickle.dump(image_map, data_file) data_file.close() def get_organized_images(): data_file = open(IMAGE_MAP_DATA_FILE, mode = 'r') image_map = pickle.load(data_file, encoding='latin1') data_file.close() return image_map # def maximizing_input(network, layer_index, layer_vect): # if layer_index == 0: # return layer_vect # W = network.weights[layer_index-1] # n = max(W.shape) # W_square = np.identity(n) # W_square[:W.shape[0], :W.shape[1]] = W # zeros = np.zeros((n - len(layer_vect), 1)) # vect = layer_vect.reshape((layer_vect.shape[0], 1)) # vect = np.append(vect, zeros, axis = 0) # b = np.append(network.biases[layer_index-1], zeros, axis = 0) # prev_vect = np.dot( # np.linalg.inv(W_square), # (sigmoid_inverse(vect) - b) # ) # # print layer_vect, sigmoid(np.dot(W, prev_vect)+b) # print W.shape # prev_vect = prev_vect[:W.shape[1]] # prev_vect /= np.max(np.abs(prev_vect)) # # prev_vect /= 1.1 # return maximizing_input(network, layer_index - 1, prev_vect)