// Must be inserted in a context with a definition for modify_distance_for_endpoints // All of this is with respect to a curve that's been rotated/scaled // so that b0 = (0, 0) and b1 = (1, 0). That is, b2 entirely // determines the shape of the curve vec2 bezier(float t, vec2 b2){ // Quick returns for the 0 and 1 cases if (t == 0) return vec2(0, 0); else if (t == 1) return b2; // Everything else return vec2( 2 * t * (1 - t) + b2.x * t*t, b2.y * t * t ); } float cube_root(float x){ return sign(x) * pow(abs(x), 1.0 / 3.0); } int cubic_solve(float a, float b, float c, float d, out float roots[3]){ // Normalize so a = 1 b = b / a; c = c / a; d = d / a; float p = c - b*b / 3.0; float q = b * (2.0*b*b - 9.0*c) / 27.0 + d; float p3 = p*p*p; float disc = q*q + 4.0*p3 / 27.0; float offset = -b / 3.0; if(disc >= 0.0){ float z = sqrt(disc); float u = (-q + z) / 2.0; float v = (-q - z) / 2.0; u = cube_root(u); v = cube_root(v); roots[0] = offset + u + v; return 1; } float u = sqrt(-p / 3.0); float v = acos(-sqrt( -27.0 / p3) * q / 2.0) / 3.0; float m = cos(v); float n = sin(v) * 1.732050808; float all_roots[3] = float[3]( offset + u * (n - m), offset - u * (n + m), offset + u * (m + m) ); // Only accept roots with a positive derivative int n_valid_roots = 0; for(int i = 0; i < 3; i++){ float r = all_roots[i]; if(3*r*r + 2*b*r + c > 0){ roots[n_valid_roots] = r; n_valid_roots++; } } return n_valid_roots; } float dist_to_line(vec2 p, vec2 b2){ float t = clamp(p.x / b2.x, 0, 1); float dist; if(t == 0) dist = length(p); else if(t == 1) dist = distance(p, b2); else dist = abs(p.y); return modify_distance_for_endpoints(p, dist, t); } float dist_to_point_on_curve(vec2 p, float t, vec2 b2){ t = clamp(t, 0, 1); return modify_distance_for_endpoints( p, length(p - bezier(t, b2)), t ); } float min_dist_to_curve(vec2 p, vec2 b2, float degree){ // Check if curve is really a a line if(degree == 1) return dist_to_line(p, b2); // Try finding the exact sdf by solving the equation // (d/dt) dist^2(t) = 0, which amount to the following // cubic. float xm2 = uv_b2.x - 2.0; float y = uv_b2.y; float a = xm2*xm2 + y*y; float b = 3 * xm2; float c = -(p.x*xm2 + p.y*y) + 2; float d = -p.x; float roots[3]; int n = cubic_solve(a, b, c, d, roots); // At most 2 roots will have been populated. float d0 = dist_to_point_on_curve(p, roots[0], b2); if(n == 1) return d0; float d1 = dist_to_point_on_curve(p, roots[1], b2); return min(d0, d1); }