from functools import reduce import inspect import numpy as np import operator as op def sigmoid(x): return 1.0 / (1 + np.exp(-x)) CHOOSE_CACHE = {} def choose_using_cache(n, r): if n not in CHOOSE_CACHE: CHOOSE_CACHE[n] = {} if r not in CHOOSE_CACHE[n]: CHOOSE_CACHE[n][r] = choose(n, r) return CHOOSE_CACHE[n][r] def choose(n, r): if n < r: return 0 if r == 0: return 1 denom = reduce(op.mul, range(1, r + 1), 1) numer = reduce(op.mul, range(n, n - r, -1), 1) return numer // denom def get_num_args(function): return len(inspect.signature(function).parameters) # Just to have a less heavyweight name for this extremely common operation # # We may wish to have more fine-grained control over division by zero behavior # in the future (separate specifiable values for 0/0 and x/0 with x != 0), # but for now, we just allow the option to handle indeterminate 0/0. def clip_in_place(array, min_val=None, max_val=None): if max_val is not None: array[array > max_val] = max_val if min_val is not None: array[array < min_val] = min_val return array def fdiv(a, b, zero_over_zero_value=None): if zero_over_zero_value is not None: out = np.full_like(a, zero_over_zero_value) where = np.logical_or(a != 0, b != 0) else: out = None where = True return np.true_divide(a, b, out=out, where=where)