This commit is contained in:
techdude
2021-01-31 18:52:17 -07:00
432 changed files with 10582 additions and 285141 deletions

View File

@ -1,106 +1,72 @@
from manimlib.constants import *
from manimlib.mobject.types.vectorized_mobject import VMobject
from manimlib.utils.config_ops import digest_config
import math
from manimlib.utils.space_ops import get_norm
class ParametricFunction(VMobject):
class ParametricCurve(VMobject):
CONFIG = {
"t_min": 0,
"t_max": 1,
"step_size": 0.01, # Use "auto" (lowercase) for automatic step size
"dt": 1e-8,
# TODO, be smarter about figuring these out?
"t_range": [0, 1, 0.1],
"min_samples": 10,
"epsilon": 1e-8,
# TODO, automatically figure out discontinuities
"discontinuities": [],
"smoothing": True,
}
def __init__(self, function=None, **kwargs):
# either get a function from __init__ or from CONFIG
self.function = function or self.function
def __init__(self, t_func, t_range=None, **kwargs):
digest_config(self, kwargs)
if t_range is not None:
self.t_range[:len(t_range)] = t_range
# To be backward compatible with all the scenes specifying t_min, t_max, step_size
self.t_range = [
kwargs.get("t_min", self.t_range[0]),
kwargs.get("t_max", self.t_range[1]),
kwargs.get("step_size", self.t_range[2]),
]
self.t_func = t_func
VMobject.__init__(self, **kwargs)
def get_function(self):
return self.function
def get_point_from_function(self, t):
return self.function(t)
return self.t_func(t)
def get_step_size(self, t=None):
if self.step_size == "auto":
"""
for x between -1 to 1, return 0.01
else, return log10(x) (rounded)
e.g.: 10.5 -> 0.1 ; 1040 -> 10
"""
if t == 0:
scale = 0
else:
scale = math.log10(abs(t))
if scale < 0:
scale = 0
def init_points(self):
t_min, t_max, step = self.t_range
scale = math.floor(scale)
scale -= 2
return math.pow(10, scale)
else:
return self.step_size
def generate_points(self):
t_min, t_max = self.t_min, self.t_max
dt = self.dt
discontinuities = filter(
lambda t: t_min <= t <= t_max,
self.discontinuities
)
discontinuities = np.array(list(discontinuities))
boundary_times = [
self.t_min, self.t_max,
*(discontinuities - dt),
*(discontinuities + dt),
]
jumps = np.array(self.discontinuities)
jumps = jumps[(jumps > t_min) & (jumps < t_max)]
boundary_times = [t_min, t_max, *(jumps - self.epsilon), *(jumps + self.epsilon)]
boundary_times.sort()
for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]):
t_range = list(np.arange(t1, t2, self.get_step_size(t1)))
if t_range[-1] != t2:
t_range.append(t2)
points = np.array([self.function(t) for t in t_range])
valid_indices = np.apply_along_axis(
np.all, 1, np.isfinite(points)
)
points = points[valid_indices]
if len(points) > 0:
self.start_new_path(points[0])
self.add_points_as_corners(points[1:])
t_range = [*np.arange(t1, t2, step), t2]
points = np.array([self.t_func(t) for t in t_range])
self.start_new_path(points[0])
self.add_points_as_corners(points[1:])
if self.smoothing:
self.make_smooth()
return self
class FunctionGraph(ParametricFunction):
class FunctionGraph(ParametricCurve):
CONFIG = {
"color": YELLOW,
"x_min": -FRAME_X_RADIUS,
"x_max": FRAME_X_RADIUS,
"x_range": [-8, 8, 0.25],
}
def __init__(self, function, **kwargs):
def __init__(self, function, x_range=None, **kwargs):
digest_config(self, kwargs)
self.parametric_function = \
lambda t: np.array([t, function(t), 0])
ParametricFunction.__init__(
self,
self.parametric_function,
t_min=self.x_min,
t_max=self.x_max,
**kwargs
)
self.function = function
if x_range is not None:
self.x_range[:len(x_range)] = x_range
def parametric_function(t):
return [t, function(t), 0]
super().__init__(parametric_function, self.x_range, **kwargs)
def get_function(self):
return self.function
def get_point_from_function(self, x):
return self.parametric_function(x)
return self.t_func(x)