Some refactors for MTex

This commit is contained in:
YishiMichael
2022-01-26 13:03:14 +08:00
parent 07f84e2676
commit e8205a5049
7 changed files with 111 additions and 234 deletions

View File

@ -1,34 +1,16 @@
from functools import reduce
import inspect
import numpy as np
import operator as op
from scipy import special
from functools import lru_cache
def sigmoid(x):
return 1.0 / (1 + np.exp(-x))
CHOOSE_CACHE = {}
def choose_using_cache(n, r):
if n not in CHOOSE_CACHE:
CHOOSE_CACHE[n] = {}
if r not in CHOOSE_CACHE[n]:
CHOOSE_CACHE[n][r] = choose(n, r, use_cache=False)
return CHOOSE_CACHE[n][r]
def choose(n, r, use_cache=True):
if use_cache:
return choose_using_cache(n, r)
if n < r:
return 0
if r == 0:
return 1
denom = reduce(op.mul, range(1, r + 1), 1)
numer = reduce(op.mul, range(n, n - r, -1), 1)
return numer // denom
@lru_cache(maxsize=10)
def choose(n, k):
return special.comb(n, k, exact=True)
def get_num_args(function):
@ -53,14 +35,6 @@ def clip(a, min_a, max_a):
return a
def clip_in_place(array, min_val=None, max_val=None):
if max_val is not None:
array[array > max_val] = max_val
if min_val is not None:
array[array < min_val] = min_val
return array
def fdiv(a, b, zero_over_zero_value=None):
if zero_over_zero_value is not None:
out = np.full_like(a, zero_over_zero_value)