mirror of
https://github.com/3b1b/manim.git
synced 2025-07-31 22:13:30 +08:00
Chopping stuff up in Moser
This commit is contained in:
@ -34,7 +34,8 @@ for folder in [IMAGE_DIR, GIF_DIR, MOVIE_DIR, TEX_DIR, TMP_IMAGE_DIR, TEX_IMAGE_
|
||||
PDF_DENSITY = 800
|
||||
SIZE_TO_REPLACE = "SizeHere"
|
||||
TEX_TEXT_TO_REPLACE = "YourTextHere"
|
||||
TEMPLATE_TEX_FILE = os.path.join(TEX_DIR, "template.tex")
|
||||
TEMPLATE_TEX_FILE = os.path.join(TEX_DIR, "template.tex")
|
||||
TEMPLATE_TEXT_FILE = os.path.join(TEX_DIR, "text_template.tex")
|
||||
|
||||
LOGO_PATH = os.path.join(IMAGE_DIR, "logo.png")
|
||||
|
||||
|
@ -72,6 +72,9 @@ def there_and_back(t, inflection = 10.0):
|
||||
def not_quite_there(t, proportion = 0.7):
|
||||
return proportion*high_inflection_0_to_1(t)
|
||||
|
||||
def wiggle(t, wiggles = 2):
|
||||
return there_and_back(t) * np.sin(wiggles*np.pi*t)
|
||||
|
||||
### Functional Functions ###
|
||||
|
||||
def composition(func_list):
|
||||
|
@ -86,11 +86,16 @@ class VideoIcon(ImageMobject):
|
||||
ImageMobject.__init__(self, "video_icon", *args, **kwargs)
|
||||
self.scale(0.3)
|
||||
|
||||
def text_mobject(text, size = r"\Large"):
|
||||
image = tex_to_image(text, size, TEMPLATE_TEXT_FILE)
|
||||
assert(not isinstance(image, list))
|
||||
return ImageMobject(image)
|
||||
|
||||
#Purely redundant function to make singulars and plurals sensible
|
||||
def tex_mobject(expression, size = "\HUGE"):
|
||||
def tex_mobject(expression, size = r"\HUGE"):
|
||||
return tex_mobjects(expression, size)
|
||||
|
||||
def tex_mobjects(expression, size = "\HUGE"):
|
||||
def tex_mobjects(expression, size = r"\HUGE"):
|
||||
images = tex_to_image(expression, size)
|
||||
if isinstance(images, list):
|
||||
#TODO, is checking listiness really the best here?
|
||||
|
511
mobject.py
Normal file
511
mobject.py
Normal file
@ -0,0 +1,511 @@
|
||||
import numpy as np
|
||||
import itertools as it
|
||||
import os
|
||||
from PIL import Image
|
||||
from random import random
|
||||
from copy import deepcopy
|
||||
from colour import Color
|
||||
|
||||
from constants import *
|
||||
from helpers import *
|
||||
import displayer as disp
|
||||
|
||||
|
||||
class Mobject(object):
|
||||
"""
|
||||
Mathematical Object
|
||||
"""
|
||||
#Number of numbers used to describe a point (3 for pos, 3 for normal vector)
|
||||
DIM = 3
|
||||
|
||||
DEFAULT_COLOR = Color("skyblue")
|
||||
|
||||
SHOULD_BUFF_POINTS = GENERALLY_BUFF_POINTS
|
||||
|
||||
def __init__(self,
|
||||
color = None,
|
||||
name = None,
|
||||
center = None,
|
||||
):
|
||||
self.color = Color(color) if color else Color(self.DEFAULT_COLOR)
|
||||
if not hasattr(self, "name"):
|
||||
self.name = name or self.__class__.__name__
|
||||
self.has_normals = hasattr(self, 'unit_normal')
|
||||
self.points = np.zeros((0, 3))
|
||||
self.rgbs = np.zeros((0, 3))
|
||||
if self.has_normals:
|
||||
self.unit_normals = np.zeros((0, 3))
|
||||
self.generate_points()
|
||||
if center:
|
||||
self.center().shift(center)
|
||||
|
||||
def __str__(self):
|
||||
return self.name
|
||||
|
||||
def show(self):
|
||||
Image.fromarray(disp.paint_mobject(self)).show()
|
||||
|
||||
def save_image(self, name = None):
|
||||
Image.fromarray(disp.paint_mobject(self)).save(
|
||||
os.path.join(MOVIE_DIR, (name or str(self)) + ".png")
|
||||
)
|
||||
|
||||
def add_points(self, points, rgbs = None, color = None):
|
||||
"""
|
||||
points must be a Nx3 numpy array, as must rgbs if it is not None
|
||||
"""
|
||||
points = np.array(points)
|
||||
num_new_points = points.shape[0]
|
||||
self.points = np.append(self.points, points)
|
||||
self.points = self.points.reshape((self.points.size / 3, 3))
|
||||
if rgbs is None:
|
||||
color = Color(color) if color else self.color
|
||||
rgbs = np.array([color.get_rgb()] * num_new_points)
|
||||
else:
|
||||
if rgbs.shape != points.shape:
|
||||
raise Exception("points and rgbs must have same shape")
|
||||
self.rgbs = np.append(self.rgbs, rgbs).reshape(self.points.shape)
|
||||
if self.has_normals:
|
||||
self.unit_normals = np.append(
|
||||
self.unit_normals,
|
||||
np.array([self.unit_normal(point) for point in points])
|
||||
).reshape(self.points.shape)
|
||||
return self
|
||||
|
||||
def rotate(self, angle, axis = [0, 0, 1]):
|
||||
t_rotation_matrix = np.transpose(rotation_matrix(angle, axis))
|
||||
self.points = np.dot(self.points, t_rotation_matrix)
|
||||
if self.has_normals:
|
||||
self.unit_normals = np.dot(self.unit_normals, t_rotation_matrix)
|
||||
return self
|
||||
|
||||
def rotate_in_place(self, angle, axis = [0, 0, 1]):
|
||||
center = self.get_center()
|
||||
self.shift(-center)
|
||||
self.rotate(angle, axis)
|
||||
self.shift(center)
|
||||
return self
|
||||
|
||||
def shift(self, vector):
|
||||
cycle = it.cycle(vector)
|
||||
v = np.array([cycle.next() for x in range(self.points.size)]).reshape(self.points.shape)
|
||||
self.points += v
|
||||
return self
|
||||
|
||||
def center(self):
|
||||
self.shift(-self.get_center())
|
||||
return self
|
||||
|
||||
def scale(self, scale_factor):
|
||||
self.points *= scale_factor
|
||||
return self
|
||||
|
||||
def scale_in_place(self, scale_factor):
|
||||
center = self.get_center()
|
||||
return self.center().scale(scale_factor).shift(center)
|
||||
|
||||
def add(self, *mobjects):
|
||||
for mobject in mobjects:
|
||||
self.add_points(mobject.points, mobject.rgbs)
|
||||
return self
|
||||
|
||||
def repeat(self, count):
|
||||
#Can make transition animations nicer
|
||||
points, rgbs = deepcopy(self.points), deepcopy(self.rgbs)
|
||||
for x in range(count - 1):
|
||||
self.add_points(points, rgbs)
|
||||
return self
|
||||
|
||||
def get_num_points(self):
|
||||
return self.points.shape[0]
|
||||
|
||||
def pose_at_angle(self):
|
||||
self.rotate(np.pi / 7)
|
||||
self.rotate(np.pi / 7, [1, 0, 0])
|
||||
return self
|
||||
|
||||
def apply_function(self, function):
|
||||
self.points = np.apply_along_axis(function, 1, self.points)
|
||||
return self
|
||||
|
||||
def apply_complex_function(self, function):
|
||||
def point_map((x, y, z)):
|
||||
result = function(complex(x, y))
|
||||
return (result.real, result.imag, 0)
|
||||
return self.apply_function(point_map)
|
||||
|
||||
def highlight(self, color = "red", condition = lambda x : True):
|
||||
"""
|
||||
Condition is function which takes in one arguments, (x, y, z).
|
||||
"""
|
||||
#TODO, Should self.color change?
|
||||
to_change = np.apply_along_axis(condition, 1, self.points)
|
||||
self.rgbs[to_change, :] *= 0
|
||||
self.rgbs[to_change, :] += Color(color).get_rgb()
|
||||
return self
|
||||
|
||||
def fade(self, amount = 0.5):
|
||||
self.rgbs *= amount
|
||||
return self
|
||||
|
||||
def filter_out(self, condition):
|
||||
to_eliminate = ~np.apply_along_axis(condition, 1, self.points)
|
||||
self.points = self.points[to_eliminate]
|
||||
self.rgbs = self.rgbs[to_eliminate]
|
||||
return self
|
||||
|
||||
### Getters ###
|
||||
def get_center(self):
|
||||
return np.apply_along_axis(np.mean, 0, self.points)
|
||||
|
||||
def get_width(self):
|
||||
return np.max(self.points[:, 0]) - np.min(self.points[:, 0])
|
||||
|
||||
def get_height(self):
|
||||
return np.max(self.points[:, 1]) - np.min(self.points[:, 1])
|
||||
|
||||
### Stuff subclasses should deal with ###
|
||||
def should_buffer_points(self):
|
||||
# potentially changed in subclasses
|
||||
return GENERALLY_BUFF_POINTS
|
||||
|
||||
def generate_points(self):
|
||||
#Typically implemented in subclass, unless purposefully left blank
|
||||
pass
|
||||
|
||||
### Static Methods ###
|
||||
def align_data(mobject1, mobject2):
|
||||
count1, count2 = mobject1.get_num_points(), mobject2.get_num_points()
|
||||
if count1 == 0:
|
||||
mobject1.add_points([(0, 0, 0)])
|
||||
if count2 == 0:
|
||||
mobject2.add_points([(0, 0, 0)])
|
||||
if count1 == count2:
|
||||
return
|
||||
for attr in ['points', 'rgbs']:
|
||||
new_arrays = make_even(getattr(mobject1, attr), getattr(mobject2, attr))
|
||||
for array, mobject in zip(new_arrays, [mobject1, mobject2]):
|
||||
setattr(mobject, attr, np.array(array))
|
||||
|
||||
def interpolate(mobject1, mobject2, target_mobject, alpha):
|
||||
"""
|
||||
Turns target_mobject into an interpolation between mobject1
|
||||
and mobject2.
|
||||
"""
|
||||
Mobject.align_data(mobject1, mobject2)
|
||||
for attr in ['points', 'rgbs']:
|
||||
new_array = (1 - alpha) * getattr(mobject1, attr) + \
|
||||
alpha * getattr(mobject2, attr)
|
||||
setattr(target_mobject, attr, new_array)
|
||||
|
||||
class Mobject1D(Mobject):
|
||||
def __init__(self, density = DEFAULT_POINT_DENSITY_1D, *args, **kwargs):
|
||||
self.epsilon = 1.0 / density
|
||||
Mobject.__init__(self, *args, **kwargs)
|
||||
|
||||
class Mobject2D(Mobject):
|
||||
def __init__(self, density = DEFAULT_POINT_DENSITY_2D, *args, **kwargs):
|
||||
self.epsilon = 1.0 / density
|
||||
Mobject.__init__(self, *args, **kwargs)
|
||||
|
||||
class CompoundMobject(Mobject):
|
||||
def __init__(self, *mobjects):
|
||||
Mobject.__init__(self)
|
||||
for mobject in mobjects:
|
||||
self.add_points(mobject.points, mobject.rgbs)
|
||||
|
||||
|
||||
###### Concrete Mobjects ########
|
||||
|
||||
class Stars(Mobject):
|
||||
DEFAULT_COLOR = "white"
|
||||
SHOULD_BUFF_POINTS = False
|
||||
def __init__(self, num_points = DEFAULT_NUM_STARS,
|
||||
*args, **kwargs):
|
||||
self.num_points = num_points
|
||||
Mobject.__init__(self, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
(
|
||||
r * np.sin(phi)*np.cos(theta),
|
||||
r * np.sin(phi)*np.sin(theta),
|
||||
r * np.cos(phi)
|
||||
)
|
||||
for x in range(self.num_points)
|
||||
for r, phi, theta in [[
|
||||
max(SPACE_HEIGHT, SPACE_WIDTH) * random(),
|
||||
np.pi * random(),
|
||||
2 * np.pi * random(),
|
||||
]]
|
||||
])
|
||||
|
||||
class Point(Mobject):
|
||||
def __init__(self, point = (0, 0, 0), *args, **kwargs):
|
||||
Mobject.__init__(self, *args, **kwargs)
|
||||
self.points = np.array(point).reshape(1, 3)
|
||||
self.rgbs = np.array(self.color.get_rgb()).reshape(1, 3)
|
||||
|
||||
class Arrow(Mobject1D):
|
||||
DEFAULT_COLOR = "white"
|
||||
NUNGE_DISTANCE = 0.1
|
||||
def __init__(self, point = (0, 0, 0), direction = (-1, 1, 0),
|
||||
length = 1, tip_length = 0.25,
|
||||
normal = (0, 0, 1), *args, **kwargs):
|
||||
self.point = np.array(point)
|
||||
self.direction = np.array(direction) / np.linalg.norm(direction)
|
||||
self.normal = np.array(normal)
|
||||
self.length = length
|
||||
self.tip_length = tip_length
|
||||
Mobject1D.__init__(self, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
[x, x, x] * self.direction + self.point
|
||||
for x in np.arange(-self.length, 0, self.epsilon)
|
||||
])
|
||||
tips_dir = np.array(-self.direction), np.array(-self.direction)
|
||||
for i, sgn in zip([0, 1], [-1, 1]):
|
||||
tips_dir[i] = rotate_vector(tips_dir[i], sgn * np.pi / 4, self.normal)
|
||||
self.add_points([
|
||||
[x, x, x] * tips_dir[i] + self.point
|
||||
for x in np.arange(0, self.tip_length, self.epsilon)
|
||||
for i in [0, 1]
|
||||
])
|
||||
|
||||
def nudge(self):
|
||||
return self.shift(-self.direction * self.NUNGE_DISTANCE)
|
||||
|
||||
class Vector(Arrow):
|
||||
def __init__(self, point = (1, 0, 0), *args, **kwargs):
|
||||
length = np.linalg.norm(point)
|
||||
Arrow.__init__(self, point = point, direction = point,
|
||||
length = length, tip_length = 0.2 * length,
|
||||
*args, **kwargs)
|
||||
|
||||
class Dot(Mobject1D): #Use 1D density, even though 2D
|
||||
DEFAULT_COLOR = "white"
|
||||
def __init__(self, center = (0, 0, 0), radius = 0.05, *args, **kwargs):
|
||||
center = np.array(center)
|
||||
if center.size == 1:
|
||||
raise Exception("Center must have 2 or 3 coordinates!")
|
||||
elif center.size == 2:
|
||||
center = np.append(center, [0])
|
||||
self.center_point = center
|
||||
self.radius = radius
|
||||
Mobject1D.__init__(self, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
np.array((t*np.cos(theta), t*np.sin(theta), 0)) + self.center_point
|
||||
for t in np.arange(0, self.radius, self.epsilon)
|
||||
for theta in np.arange(0, 2 * np.pi, self.epsilon)
|
||||
])
|
||||
|
||||
class Cross(Mobject1D):
|
||||
RADIUS = 0.3
|
||||
DEFAULT_COLOR = "white"
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
(sgn * x, x, 0)
|
||||
for x in np.arange(-self.RADIUS / 2, self.RADIUS/2, self.epsilon)
|
||||
for sgn in [-1, 1]
|
||||
])
|
||||
|
||||
class Line(Mobject1D):
|
||||
def __init__(self, start, end, density = DEFAULT_POINT_DENSITY_1D, *args, **kwargs):
|
||||
self.start = np.array(start)
|
||||
self.end = np.array(end)
|
||||
density *= np.linalg.norm(self.start - self.end)
|
||||
Mobject1D.__init__(self, density = density, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
t * self.end + (1 - t) * self.start
|
||||
for t in np.arange(0, 1, self.epsilon)
|
||||
])
|
||||
|
||||
class CurvedLine(Line):
|
||||
def generate_points(self):
|
||||
equidistant_point = rotate_vector(
|
||||
self.end - self.start,
|
||||
np.pi/3, [0,0,1]
|
||||
) + self.start
|
||||
self.add_points([
|
||||
(1 - t*(1-t))*(t*self.end + (1-t)*self.start) \
|
||||
+ t*(1-t)*equidistant_point
|
||||
for t in np.arange(0, 1, self.epsilon)
|
||||
])
|
||||
self.ep = equidistant_point
|
||||
|
||||
class CubeWithFaces(Mobject2D):
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
sgn * np.array(coords)
|
||||
for x in np.arange(-1, 1, self.epsilon)
|
||||
for y in np.arange(x, 1, self.epsilon)
|
||||
for coords in it.permutations([x, y, 1])
|
||||
for sgn in [-1, 1]
|
||||
])
|
||||
self.pose_at_angle()
|
||||
|
||||
def unit_normal(self, coords):
|
||||
return np.array(map(lambda x : 1 if abs(x) == 1 else 0, coords))
|
||||
|
||||
class Cube(Mobject1D):
|
||||
DEFAULT_COLOR = "yellow"
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
([a, b, c][p[0]], [a, b, c][p[1]], [a, b, c][p[2]])
|
||||
for p in [(0, 1, 2), (2, 0, 1), (1, 2, 0)]
|
||||
for a, b, c in it.product([-1, 1], [-1, 1], np.arange(-1, 1, self.epsilon))
|
||||
])
|
||||
self.pose_at_angle()
|
||||
|
||||
|
||||
class Sphere(Mobject2D):
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
(
|
||||
np.sin(phi) * np.cos(theta),
|
||||
np.sin(phi) * np.sin(theta),
|
||||
np.cos(phi)
|
||||
)
|
||||
for phi in np.arange(self.epsilon, np.pi, self.epsilon)
|
||||
for theta in np.arange(0, 2 * np.pi, 2 * self.epsilon / np.sin(phi))
|
||||
])
|
||||
|
||||
def unit_normal(self, coords):
|
||||
return np.array(coords) / np.linalg.norm(coords)
|
||||
|
||||
class Circle(Mobject1D):
|
||||
DEFAULT_COLOR = "red"
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
(np.cos(theta), np.sin(theta), 0)
|
||||
for theta in np.arange(0, 2 * np.pi, self.epsilon)
|
||||
])
|
||||
|
||||
class FunctionGraph(Mobject1D):
|
||||
DEFAULT_COLOR = "lightblue"
|
||||
def __init__(self, function, x_range = [-10, 10], *args, **kwargs):
|
||||
self.function = function
|
||||
self.x_min = x_range[0] / SPACE_WIDTH
|
||||
self.x_max = x_range[1] / SPACE_WIDTH
|
||||
Mobject1D.__init__(self, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
scale_factor = 2.0 * SPACE_WIDTH / (self.x_max - self.x_min)
|
||||
self.epsilon /= scale_factor
|
||||
self.add_points([
|
||||
np.array([x, self.function(x), 0])
|
||||
for x in np.arange(self.x_min, self.x_max, self.epsilon)
|
||||
])
|
||||
self.scale(scale_factor)
|
||||
|
||||
|
||||
class ParametricFunction(Mobject):
|
||||
DEFAULT_COLOR = "lightblue"
|
||||
def __init__(self,
|
||||
function,
|
||||
dim = 1,
|
||||
expected_measure = 10.0,
|
||||
density = None,
|
||||
*args,
|
||||
**kwargs):
|
||||
self.function = function
|
||||
self.dim = dim
|
||||
self.expected_measure = expected_measure
|
||||
if density:
|
||||
self.epsilon = 1.0 / density
|
||||
elif self.dim == 1:
|
||||
self.epsilon = 1.0 / expected_measure / DEFAULT_POINT_DENSITY_1D
|
||||
else:
|
||||
self.epsilon = 1.0 / np.sqrt(expected_measure) / DEFAULT_POINT_DENSITY_2D
|
||||
Mobject.__init__(self, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
if self.dim == 1:
|
||||
self.add_points([
|
||||
self.function(t)
|
||||
for t in np.arange(-1, 1, self.epsilon)
|
||||
])
|
||||
if self.dim == 2:
|
||||
self.add_points([
|
||||
self.function(s, t)
|
||||
for t in np.arange(-1, 1, self.epsilon)
|
||||
for s in np.arange(-1, 1, self.epsilon)
|
||||
])
|
||||
|
||||
class Grid(Mobject1D):
|
||||
DEFAULT_COLOR = "green"
|
||||
def __init__(self,
|
||||
radius = max(SPACE_HEIGHT, SPACE_WIDTH),
|
||||
interval_size = 1.0,
|
||||
subinterval_size = 0.5,
|
||||
*args, **kwargs):
|
||||
self.radius = radius
|
||||
self.interval_size = interval_size
|
||||
self.subinterval_size = subinterval_size
|
||||
Mobject1D.__init__(self, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
(sgns[0] * x, sgns[1] * y, 0)
|
||||
for beta in np.arange(0, self.radius, self.interval_size)
|
||||
for alpha in np.arange(0, self.radius, self.epsilon)
|
||||
for sgns in it.product((-1, 1), (-1, 1))
|
||||
for x, y in [(alpha, beta), (beta, alpha)]
|
||||
])
|
||||
if self.subinterval_size:
|
||||
si = self.subinterval_size
|
||||
color = Color(self.color)
|
||||
color.set_rgb([x/2 for x in color.get_rgb()])
|
||||
self.add_points([
|
||||
(sgns[0] * x, sgns[1] * y, 0)
|
||||
for beta in np.arange(0, self.radius, si)
|
||||
if abs(beta % self.interval_size) > self.epsilon
|
||||
for alpha in np.arange(0, self.radius, self.epsilon)
|
||||
for sgns in it.product((-1, 1), (-1, 1))
|
||||
for x, y in [(alpha, beta), (beta, alpha)]
|
||||
], color = color)
|
||||
|
||||
class NumberLine(Mobject1D):
|
||||
def __init__(self,
|
||||
radius = SPACE_WIDTH,
|
||||
interval_size = 0.5, tick_size = 0.1,
|
||||
with_numbers = False, *args, **kwargs):
|
||||
self.radius = int(radius) + 1
|
||||
self.interval_size = interval_size
|
||||
self.tick_size = tick_size
|
||||
self.with_numbers = with_numbers
|
||||
Mobject1D.__init__(self, *args, **kwargs)
|
||||
|
||||
def generate_points(self):
|
||||
self.add_points([
|
||||
(x, 0, 0)
|
||||
for x in np.arange(-self.radius, self.radius, self.epsilon)
|
||||
])
|
||||
self.add_points([
|
||||
(0, y, 0)
|
||||
for y in np.arange(-2*self.tick_size, 2*self.tick_size, self.epsilon)
|
||||
])
|
||||
self.add_points([
|
||||
(x, y, 0)
|
||||
for x in np.arange(-self.radius, self.radius, self.interval_size)
|
||||
for y in np.arange(-self.tick_size, self.tick_size, self.epsilon)
|
||||
])
|
||||
if self.with_numbers:
|
||||
#TODO, test
|
||||
vertical_displacement = -0.3
|
||||
nums = range(-self.radius, self.radius)
|
||||
nums = map(lambda x : x / self.interval_size, nums)
|
||||
mobs = tex_mobjects(*[str(num) for num in nums])
|
||||
for num, mob in zip(nums, mobs):
|
||||
mob.center().shift([num, vertical_displacement, 0])
|
||||
self.add(*mobs)
|
||||
|
||||
# class ComplexPlane(Grid):
|
||||
# def __init__(self, *args, **kwargs):
|
||||
# Grid.__init__(self, *args, **kwargs)
|
||||
# self.add(Dot())
|
@ -1,345 +0,0 @@
|
||||
from PIL import Image
|
||||
from colour import Color
|
||||
import numpy as np
|
||||
import warnings
|
||||
import time
|
||||
import os
|
||||
import copy
|
||||
import progressbar
|
||||
import inspect
|
||||
from images2gif import writeGif
|
||||
|
||||
from helpers import *
|
||||
from mobject import *
|
||||
import displayer as disp
|
||||
|
||||
class MobjectMovement(object):
|
||||
def __init__(self,
|
||||
mobject,
|
||||
run_time = DEFAULT_ANIMATION_RUN_TIME,
|
||||
alpha_func = high_inflection_0_to_1,
|
||||
name = None):
|
||||
if isinstance(mobject, type) and issubclass(mobject, Mobject):
|
||||
self.mobject = mobject()
|
||||
elif isinstance(mobject, Mobject):
|
||||
self.mobject = mobject
|
||||
else:
|
||||
raise Exception("Invalid mobject parameter, must be \
|
||||
subclass or instance of Mobject")
|
||||
self.starting_mobject = copy.deepcopy(self.mobject)
|
||||
self.reference_mobjects = [self.starting_mobject]
|
||||
self.alpha_func = alpha_func or (lambda x : x)
|
||||
self.run_time = run_time
|
||||
#TODO, Adress the idea of filtering the mobmov
|
||||
self.filter_functions = []
|
||||
self.restricted_height = SPACE_HEIGHT
|
||||
self.restricted_width = SPACE_WIDTH
|
||||
self.spacial_center = np.zeros(3)
|
||||
self.name = name or self.__class__.__name__ + str(self.mobject)
|
||||
|
||||
def __str__(self):
|
||||
return self.name
|
||||
|
||||
def get_points_and_rgbs(self):
|
||||
"""
|
||||
It is the responsibility of this class to only emit points within
|
||||
the space. Returns np array of points and corresponding np array
|
||||
of rgbs
|
||||
"""
|
||||
#TODO, I don't think this should be necessary. This should happen
|
||||
#under the individual mobjects.
|
||||
points = self.mobject.points
|
||||
rgbs = self.mobject.rgbs
|
||||
#Filters out what is out of bounds.
|
||||
admissibles = (abs(points[:,0]) < self.restricted_width) * \
|
||||
(abs(points[:,1]) < self.restricted_height)
|
||||
for filter_function in self.filter_functions:
|
||||
admissibles *= ~filter_function(points)
|
||||
if any(self.spacial_center):
|
||||
points += self.spacial_center
|
||||
#Filter out points pushed off the edge
|
||||
admissibles *= (abs(points[:,0]) < SPACE_WIDTH) * \
|
||||
(abs(points[:,1]) < SPACE_HEIGHT)
|
||||
if rgbs.shape[0] < points.shape[0]:
|
||||
#TODO, this shouldn't be necessary, find what's happening.
|
||||
points = points[:rgbs.shape[0], :]
|
||||
admissibles = admissibles[:rgbs.shape[0]]
|
||||
return points[admissibles, :], rgbs[admissibles, :]
|
||||
|
||||
def update(self, alpha):
|
||||
if alpha < 0:
|
||||
alpha = 0
|
||||
if alpha > 1:
|
||||
alpha = 1
|
||||
self.update_mobject(self.alpha_func(alpha))
|
||||
|
||||
def filter_out(self, *filter_functions):
|
||||
self.filter_functions += filter_functions
|
||||
return self
|
||||
|
||||
def restrict_height(self, height):
|
||||
self.restricted_height = min(height, SPACE_HEIGHT)
|
||||
return self
|
||||
|
||||
def restrict_width(self, width):
|
||||
self.restricted_width = min(width, SPACE_WIDTH)
|
||||
return self
|
||||
|
||||
def shift(self, vector):
|
||||
self.spacial_center += vector
|
||||
return self
|
||||
|
||||
def set_run_time(self, time):
|
||||
self.run_time = time
|
||||
return self.reload()
|
||||
|
||||
def set_alpha_func(self, alpha_func):
|
||||
if alpha_func is None:
|
||||
alpha_func = lambda x : x
|
||||
self.alpha_func = alpha_func
|
||||
return self
|
||||
|
||||
def set_name(self, name):
|
||||
self.name = name
|
||||
return self
|
||||
|
||||
# def drag_pixels(self):
|
||||
# self.frames = drag_pixels(self.get_frames())
|
||||
# return self
|
||||
|
||||
# def reverse(self):
|
||||
# self.get_frames().reverse()
|
||||
# self.name = 'Reversed' + str(self)
|
||||
# return self
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
#Typically ipmlemented by subclass
|
||||
pass
|
||||
|
||||
def clean_up(self):
|
||||
pass
|
||||
|
||||
|
||||
###### Concrete MobjectMovement ########
|
||||
|
||||
class Rotating(MobjectMovement):
|
||||
def __init__(self,
|
||||
mobject,
|
||||
axis = None,
|
||||
axes = [[0, 0, 1], [0, 1, 0]],
|
||||
radians = 2 * np.pi,
|
||||
run_time = 20.0,
|
||||
alpha_func = None,
|
||||
*args, **kwargs):
|
||||
MobjectMovement.__init__(
|
||||
self, mobject,
|
||||
run_time = run_time,
|
||||
alpha_func = alpha_func,
|
||||
*args, **kwargs
|
||||
)
|
||||
self.axes = [axis] if axis else axes
|
||||
self.radians = radians
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
self.mobject.points = self.starting_mobject.points
|
||||
for axis in self.axes:
|
||||
self.mobject.rotate(
|
||||
self.radians * alpha,
|
||||
axis
|
||||
)
|
||||
|
||||
class RotationAsTransform(Rotating):
|
||||
def __init__(self, mobject, radians, axis = (0, 0, 1), axes = None,
|
||||
run_time = DEFAULT_ANIMATION_RUN_TIME,
|
||||
alpha_func = high_inflection_0_to_1,
|
||||
*args, **kwargs):
|
||||
Rotating.__init__(
|
||||
self,
|
||||
mobject,
|
||||
axis = axis,
|
||||
axes = axes,
|
||||
run_time = run_time,
|
||||
radians = radians,
|
||||
alpha_func = alpha_func,
|
||||
)
|
||||
|
||||
class FadeOut(MobjectMovement):
|
||||
def update_mobject(self, alpha):
|
||||
self.mobject.rgbs = self.starting_mobject.rgbs * (1 - alpha)
|
||||
|
||||
class Reveal(MobjectMovement):
|
||||
def update_mobject(self, alpha):
|
||||
self.mobject.rgbs = self.starting_mobject.rgbs * alpha
|
||||
if self.mobject.points.shape != self.starting_mobject.points.shape:
|
||||
self.mobject.points = self.starting_mobject.points
|
||||
#TODO, Why do you need to do this? Shouldn't points always align?
|
||||
|
||||
class Transform(MobjectMovement):
|
||||
def __init__(self, mobject1, mobject2,
|
||||
run_time = DEFAULT_TRANSFORM_RUN_TIME,
|
||||
*args, **kwargs):
|
||||
count1, count2 = mobject1.get_num_points(), mobject2.get_num_points()
|
||||
Mobject.align_data(mobject1, mobject2)
|
||||
MobjectMovement.__init__(self, mobject1, run_time = run_time, *args, **kwargs)
|
||||
self.ending_mobject = mobject2
|
||||
self.mobject.SHOULD_BUFF_POINTS = \
|
||||
mobject1.SHOULD_BUFF_POINTS and mobject2.SHOULD_BUFF_POINTS
|
||||
self.reference_mobjects.append(mobject2)
|
||||
self.name += "To" + str(mobject2)
|
||||
|
||||
if count2 < count1:
|
||||
#Ensure redundant pixels fade to black
|
||||
indices = self.non_redundant_m2_indices = \
|
||||
np.arange(0, count1-1, float(count1) / count2).astype('int')
|
||||
temp = np.zeros(mobject2.points.shape)
|
||||
temp[indices] = mobject2.rgbs[indices]
|
||||
mobject2.rgbs = temp
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
Mobject.interpolate(
|
||||
self.starting_mobject,
|
||||
self.ending_mobject,
|
||||
self.mobject,
|
||||
alpha
|
||||
)
|
||||
|
||||
def clean_up(self):
|
||||
if hasattr(self, "non_redundant_m2_indices"):
|
||||
#Reduce mobject (which has become identical to mobject2), as
|
||||
#well as mobject2 itself
|
||||
for mobject in [self.mobject, self.ending_mobject]:
|
||||
for attr in ['points', 'rgbs']:
|
||||
setattr(
|
||||
mobject, attr,
|
||||
getattr(
|
||||
self.ending_mobject,
|
||||
attr
|
||||
)[self.non_redundant_m2_indices]
|
||||
)
|
||||
|
||||
class ApplyMethod(Transform):
|
||||
def __init__(self, method, mobject, *args, **kwargs):
|
||||
"""
|
||||
Method is a method of Mobject
|
||||
"""
|
||||
method_args = ()
|
||||
if isinstance(method, tuple):
|
||||
method, method_args = method[0], method[1:]
|
||||
if not inspect.ismethod(method):
|
||||
raise "Not a valid Mobject method"
|
||||
Transform.__init__(
|
||||
self,
|
||||
mobject,
|
||||
method(copy.deepcopy(mobject), *method_args),
|
||||
*args, **kwargs
|
||||
)
|
||||
|
||||
class ApplyFunction(Transform):
|
||||
def __init__(self, function, mobject, run_time = DEFAULT_ANIMATION_RUN_TIME,
|
||||
*args, **kwargs):
|
||||
map_image = copy.deepcopy(mobject)
|
||||
map_image.points = np.array(map(function, map_image.points))
|
||||
Transform.__init__(self, mobject, map_image, run_time = run_time,
|
||||
*args, **kwargs)
|
||||
self.name = "".join([
|
||||
"Apply",
|
||||
"".join([s.capitalize() for s in function.__name__.split("_")]),
|
||||
"To" + str(mobject)
|
||||
])
|
||||
|
||||
class ComplexFunction(ApplyFunction):
|
||||
def __init__(self, function, *args, **kwargs):
|
||||
def point_map(point):
|
||||
x, y, z = point
|
||||
c = np.complex(x, y)
|
||||
c = function(c)
|
||||
return c.real, c.imag, z
|
||||
if len(args) > 0:
|
||||
args = list(args)
|
||||
mobject = args.pop(0)
|
||||
elif "mobject" in kwargs:
|
||||
mobject = kwargs.pop("mobject")
|
||||
else:
|
||||
mobject = Grid()
|
||||
ApplyFunction.__init__(self, point_map, mobject, *args, **kwargs)
|
||||
self.name = "ComplexFunction" + to_cammel_case(function.__name__)
|
||||
#Todo, abstract away function naming'
|
||||
|
||||
class Homotopy(MobjectMovement):
|
||||
def __init__(self, homotopy, *args, **kwargs):
|
||||
"""
|
||||
Homotopy a function from (x, y, z, t) to (x', y', z')
|
||||
"""
|
||||
self.homotopy = homotopy
|
||||
MobjectMovement.__init__(self, *args, **kwargs)
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
self.mobject.points = np.array([
|
||||
self.homotopy((x, y, z, alpha))
|
||||
for x, y, z in self.starting_mobject.points
|
||||
])
|
||||
|
||||
class ComplexHomotopy(Homotopy):
|
||||
def __init__(self, complex_homotopy, *args, **kwargs):
|
||||
"""
|
||||
Complex Hootopy a function (z, t) to z'
|
||||
"""
|
||||
def homotopy((x, y, z, t)):
|
||||
c = complex_homotopy((complex(x, y), t))
|
||||
return (c.real, c.imag, z)
|
||||
if len(args) > 0:
|
||||
args = list(args)
|
||||
mobject = args.pop(0)
|
||||
elif "mobject" in kwargs:
|
||||
mobject = kwargs["mobject"]
|
||||
else:
|
||||
mobject = Grid()
|
||||
Homotopy.__init__(self, homotopy, mobject, *args, **kwargs)
|
||||
self.name = "ComplexHomotopy" + \
|
||||
to_cammel_case(complex_homotopy.__name__)
|
||||
|
||||
|
||||
class ShowCreation(MobjectMovement):
|
||||
def update_mobject(self, alpha):
|
||||
#TODO, shoudl I make this more efficient?
|
||||
new_num_points = int(alpha * self.starting_mobject.points.shape[0])
|
||||
for attr in ["points", "rgbs"]:
|
||||
setattr(
|
||||
self.mobject,
|
||||
attr,
|
||||
getattr(self.starting_mobject, attr)[:new_num_points, :]
|
||||
)
|
||||
|
||||
class Flash(MobjectMovement):
|
||||
def __init__(self, mobject, color = "white", slow_factor = 0.01,
|
||||
run_time = 0.1, alpha_func = None,
|
||||
*args, **kwargs):
|
||||
MobjectMovement.__init__(self, mobject, run_time = run_time,
|
||||
alpha_func = alpha_func,
|
||||
*args, **kwargs)
|
||||
self.intermediate = Mobject(color = color)
|
||||
self.intermediate.add_points([
|
||||
point + (x, y, 0)
|
||||
for point in self.mobject.points
|
||||
for x in [-1, 1]
|
||||
for y in [-1, 1]
|
||||
])
|
||||
self.reference_mobjects.append(self.intermediate)
|
||||
self.slow_factor = slow_factor
|
||||
|
||||
def update_mobject(self, alpha):
|
||||
#Makes alpha go from 0 to slow_factor to 0 instead of 0 to 1
|
||||
alpha = self.slow_factor * (1.0 - 4 * (alpha - 0.5)**2)
|
||||
Mobject.interpolate(
|
||||
self.starting_mobject,
|
||||
self.intermediate,
|
||||
self.mobject,
|
||||
alpha
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
132
moser/main.py
132
moser/main.py
@ -17,57 +17,9 @@ from scene import Scene
|
||||
from moser_helpers import *
|
||||
from graphs import *
|
||||
|
||||
RADIUS = SPACE_HEIGHT - 0.1
|
||||
CIRCLE_DENSITY = DEFAULT_POINT_DENSITY_1D*RADIUS
|
||||
|
||||
movie_prefix = "moser/"
|
||||
|
||||
############################################
|
||||
|
||||
class CircleScene(Scene):
|
||||
def __init__(self, radians, *args, **kwargs):
|
||||
Scene.__init__(self, *args, **kwargs)
|
||||
self.radius = RADIUS
|
||||
self.circle = Circle(density = CIRCLE_DENSITY).scale(self.radius)
|
||||
self.points = [
|
||||
(self.radius * np.cos(angle), self.radius * np.sin(angle), 0)
|
||||
for angle in radians
|
||||
]
|
||||
self.dots = [Dot(point) for point in self.points]
|
||||
self.lines = [Line(p1, p2) for p1, p2 in it.combinations(self.points, 2)]
|
||||
self.add(self.circle, *self.dots + self.lines)
|
||||
|
||||
class GraphScene(Scene):
|
||||
#Note, the placement of vertices in this is pretty hard coded, be
|
||||
#warned if you want to change it.
|
||||
def __init__(self, graph, *args, **kwargs):
|
||||
Scene.__init__(self, *args, **kwargs)
|
||||
#See CUBE_GRAPH above for format of graph
|
||||
self.graph = graph
|
||||
self.points = map(np.array, graph["vertices"])
|
||||
self.vertices = self.dots = [Dot(p) for p in self.points]
|
||||
self.edges = [
|
||||
Line(self.points[i], self.points[j])
|
||||
for i, j in graph["edges"]
|
||||
]
|
||||
self.add(*self.dots + self.edges)
|
||||
|
||||
def generate_regions(self):
|
||||
regions = [
|
||||
region_from_line_boundary(*[
|
||||
[
|
||||
self.points[rc[i]],
|
||||
self.points[rc[(i+1)%len(rc)]]
|
||||
]
|
||||
for i in range(len(rc))
|
||||
])
|
||||
for rc in self.graph["region_cycles"]
|
||||
]
|
||||
regions[-1].complement()#Outer region painted outwardly...
|
||||
self.regions = regions
|
||||
|
||||
##################################################
|
||||
|
||||
def count_lines(*radians):
|
||||
#TODO, Count things explicitly?
|
||||
sc = CircleScene(radians)
|
||||
@ -378,7 +330,7 @@ def quadruplets_to_intersections(*radians):
|
||||
))
|
||||
# sc.remove(arrows)
|
||||
|
||||
name = "QuadrupletsToIntersections" + len(radians)
|
||||
name = "QuadrupletsToIntersections%d"%len(radians)
|
||||
sc.write_to_movie(movie_prefix + name)
|
||||
|
||||
def defining_graph(graph):
|
||||
@ -447,7 +399,7 @@ def eulers_formula(graph):
|
||||
])
|
||||
for mob in form.values():
|
||||
mob.shift((0, SPACE_HEIGHT-1.5, 0))
|
||||
formula = CompoundMobject(*form.values())
|
||||
formula = CompoundMobject(*[form[k] for k in form.keys() if k != "=2"])
|
||||
new_form = dict([
|
||||
(key, deepcopy(mob).shift((0, -0.7, 0)))
|
||||
for key, mob in zip(form.keys(), form.values())
|
||||
@ -486,6 +438,81 @@ def eulers_formula(graph):
|
||||
name = "EulersFormula" + graph["name"]
|
||||
gs.write_to_movie(movie_prefix + name)
|
||||
|
||||
def apply_euler_to_moser(*radians):
|
||||
cs = CircleScene(radians)
|
||||
cs.remove(cs.n_equals)
|
||||
n_equals, intersection_count = tex_mobjects([
|
||||
r"&n = %d\\"%len(radians),
|
||||
r"&{%d \choose 4} = %d"%(len(radians), choose(len(radians), 4))
|
||||
])
|
||||
shift_val = cs.n_equals.get_center() - n_equals.get_center()
|
||||
for mob in n_equals, intersection_count:
|
||||
mob.shift(shift_val)
|
||||
cs.add(n_equals)
|
||||
yellow_dots = [d.highlight("yellow") for d in deepcopy(cs.dots)]
|
||||
yellow_lines = [l.highlight("yellow") for l in deepcopy(cs.lines)]
|
||||
cs.animate(*[
|
||||
ShowCreation(dot) for dot in yellow_dots
|
||||
], run_time = 1.0)
|
||||
cs.dither()
|
||||
cs.remove(*yellow_dots)
|
||||
cs.animate(*[
|
||||
ShowCreation(line) for line in yellow_lines
|
||||
], run_time = 1.0)
|
||||
cs.dither()
|
||||
cs.remove(yellow_lines)
|
||||
cannot_intersect = text_mobject(r"""
|
||||
Euler's formula does not apply to \\
|
||||
graphs whose edges intersect!
|
||||
"""
|
||||
)
|
||||
cannot_intersect.center()
|
||||
for mob in cs.mobjects:
|
||||
mob.fade(0.3)
|
||||
cs.add(cannot_intersect)
|
||||
cs.dither()
|
||||
cs.remove(cannot_intersect)
|
||||
for mob in cs.mobjects:
|
||||
mob.fade(1/0.3)
|
||||
cs.generate_intersection_dots()
|
||||
cs.animate(FadeIn(intersection_count), *[
|
||||
ShowCreation(dot) for dot in cs.intersection_dots
|
||||
])
|
||||
|
||||
|
||||
name = "ApplyEulerToMoser%d"%len(radians)
|
||||
cs.write_to_movie(movie_prefix + name)
|
||||
|
||||
def show_moser_graph_lines(*radians):
|
||||
radians = list(set(map(lambda x : x%(2*np.pi), radians)))
|
||||
radians.sort()
|
||||
|
||||
cs = CircleScene(radians)
|
||||
cs.chop_lines_at_intersection_points()
|
||||
cs.add(*cs.intersection_dots)
|
||||
small_lines = [
|
||||
deepcopy(line).scale_in_place(0.5)
|
||||
for line in cs.lines
|
||||
]
|
||||
cs.animate(*[
|
||||
Transform(line, small_line, run_time = 3.0)
|
||||
for line, small_line in zip(cs.lines, small_lines)
|
||||
])
|
||||
cs.count(cs.lines, color = "yellow",
|
||||
run_time = 9.0, num_offset = (0, 0, 0))
|
||||
cs.dither()
|
||||
cs.remove(cs.number)
|
||||
cs.chop_circle_at_points()
|
||||
cs.animate(*[
|
||||
Transform(p, sp, run_time = 3.0)
|
||||
for p, sp in zip(cs.circle_pieces, cs.smaller_circle_pieces)
|
||||
])
|
||||
cs.count(cs.circle_pieces, color = "yellow",
|
||||
run_time = 2.0, num_offset = (0, 0, 0))
|
||||
name = "ShowMoserGraphLines%d"%len(radians)
|
||||
cs.write_to_movie(movie_prefix + name)
|
||||
|
||||
|
||||
|
||||
##################################################
|
||||
|
||||
@ -503,13 +530,14 @@ if __name__ == '__main__':
|
||||
# illustrate_n_choose_k(6, 4)
|
||||
# intersection_point_correspondances(radians, range(0, 7, 2))
|
||||
# lines_intersect_outside(radians, [2, 4, 5, 6])
|
||||
quadruplets_to_intersections(*radians[:6])
|
||||
# quadruplets_to_intersections(*radians[:6])
|
||||
# defining_graph(SAMPLE_GRAPH)
|
||||
# doubled_edges(CUBE_GRAPH)
|
||||
# eulers_formula(CUBE_GRAPH)
|
||||
# eulers_formula(SAMPLE_GRAPH)
|
||||
# eulers_formula(OCTOHEDRON_GRAPH)
|
||||
|
||||
# apply_euler_to_moser(*radians)
|
||||
show_moser_graph_lines(*radians[:6])
|
||||
|
||||
|
||||
|
||||
|
@ -4,6 +4,125 @@ import itertools as it
|
||||
|
||||
from constants import *
|
||||
from image_mobject import *
|
||||
from scene import Scene
|
||||
|
||||
RADIUS = SPACE_HEIGHT - 0.1
|
||||
CIRCLE_DENSITY = DEFAULT_POINT_DENSITY_1D*RADIUS
|
||||
|
||||
############################################
|
||||
|
||||
class CircleScene(Scene):
|
||||
def __init__(self, radians, *args, **kwargs):
|
||||
Scene.__init__(self, *args, **kwargs)
|
||||
self.radius = RADIUS
|
||||
self.circle = Circle(density = CIRCLE_DENSITY).scale(self.radius)
|
||||
self.points = [
|
||||
(self.radius * np.cos(angle), self.radius * np.sin(angle), 0)
|
||||
for angle in radians
|
||||
]
|
||||
self.dots = [Dot(point) for point in self.points]
|
||||
self.lines = [Line(p1, p2) for p1, p2 in it.combinations(self.points, 2)]
|
||||
self.n_equals = tex_mobject(
|
||||
"n=%d"%len(radians),
|
||||
size = r"\small"
|
||||
).shift((-SPACE_WIDTH+1, SPACE_HEIGHT-1.5, 0))
|
||||
self.add(self.circle, self.n_equals, *self.dots + self.lines)
|
||||
|
||||
def generate_intersection_dots(self):
|
||||
"""
|
||||
Generates and adds attributes intersection_points and
|
||||
intersection_dots, but does not yet add them to the scene
|
||||
"""
|
||||
self.intersection_points = [
|
||||
intersection((p[0], p[2]), (p[1], p[3]))
|
||||
for p in it.combinations(self.points, 4)
|
||||
]
|
||||
self.intersection_dots = [
|
||||
Dot(point) for point in self.intersection_points
|
||||
]
|
||||
|
||||
def chop_lines_at_intersection_points(self):
|
||||
if not hasattr(self, "intersection_dots"):
|
||||
self.generate_intersection_dots()
|
||||
self.remove(*self.lines)
|
||||
self.lines = []
|
||||
for point_pair in it.combinations(self.points, 2):
|
||||
int_points = filter(
|
||||
lambda p : is_on_line(p, *point_pair),
|
||||
self.intersection_points
|
||||
)
|
||||
points = list(point_pair) + int_points
|
||||
points = map(lambda p : (p[0], p[1], 0), points)
|
||||
points.sort(cmp = lambda x,y: cmp(x[0], y[0]))
|
||||
self.lines += [
|
||||
Line(points[i], points[i+1])
|
||||
for i in range(len(points)-1)
|
||||
]
|
||||
self.add(*self.lines)
|
||||
|
||||
def chop_circle_at_points(self):
|
||||
self.remove(self.circle)
|
||||
self.circle_pieces = []
|
||||
self.smaller_circle_pieces = []
|
||||
for i in range(len(self.points)):
|
||||
pp = self.points[i], self.points[(i+1)%len(self.points)]
|
||||
transform = np.array([
|
||||
[pp[0][0], pp[1][0], 0],
|
||||
[pp[0][1], pp[1][1], 0],
|
||||
[0, 0, 1]
|
||||
])
|
||||
circle = deepcopy(self.circle)
|
||||
smaller_circle = deepcopy(self.circle)
|
||||
for c in circle, smaller_circle:
|
||||
c.points = np.dot(
|
||||
c.points,
|
||||
np.transpose(np.linalg.inv(transform))
|
||||
)
|
||||
c.filter_out(
|
||||
lambda p : p[0] < 0 or p[1] < 0
|
||||
)
|
||||
if c == smaller_circle:
|
||||
c.filter_out(
|
||||
lambda p : p[0] > 4*p[1] or p[1] > 4*p[0]
|
||||
)
|
||||
c.points = np.dot(
|
||||
c.points,
|
||||
np.transpose(transform)
|
||||
)
|
||||
self.circle_pieces.append(circle)
|
||||
self.smaller_circle_pieces.append(smaller_circle)
|
||||
self.add(*self.circle_pieces)
|
||||
|
||||
class GraphScene(Scene):
|
||||
#Note, the placement of vertices in this is pretty hard coded, be
|
||||
#warned if you want to change it.
|
||||
def __init__(self, graph, *args, **kwargs):
|
||||
Scene.__init__(self, *args, **kwargs)
|
||||
#See CUBE_GRAPH above for format of graph
|
||||
self.graph = graph
|
||||
self.points = map(np.array, graph["vertices"])
|
||||
self.vertices = self.dots = [Dot(p) for p in self.points]
|
||||
self.edges = [
|
||||
Line(self.points[i], self.points[j])
|
||||
for i, j in graph["edges"]
|
||||
]
|
||||
self.add(*self.dots + self.edges)
|
||||
|
||||
def generate_regions(self):
|
||||
regions = [
|
||||
region_from_line_boundary(*[
|
||||
[
|
||||
self.points[rc[i]],
|
||||
self.points[rc[(i+1)%len(rc)]]
|
||||
]
|
||||
for i in range(len(rc))
|
||||
])
|
||||
for rc in self.graph["region_cycles"]
|
||||
]
|
||||
regions[-1].complement()#Outer region painted outwardly...
|
||||
self.regions = regions
|
||||
|
||||
##################################################
|
||||
|
||||
def choose(n, r):
|
||||
if n < r: return 0
|
||||
@ -15,6 +134,16 @@ def choose(n, r):
|
||||
def moser_function(n):
|
||||
return choose(n, 4) + choose(n, 2) + 1
|
||||
|
||||
def is_on_line(p0, p1, p2, threshold = 0.01):
|
||||
"""
|
||||
Returns true of p0 is on the line between p1 and p2
|
||||
"""
|
||||
p0, p1, p2 = map(lambda tup : np.array(tup[:2]), [p0, p1, p2])
|
||||
p1 -= p0
|
||||
p2 -= p0
|
||||
return abs((p1[0] / p1[1]) - (p2[0] / p2[1])) < threshold
|
||||
|
||||
|
||||
def intersection(line1, line2):
|
||||
"""
|
||||
A "line" should come in the form [(x0, y0), (x1, y1)] for two
|
||||
|
@ -3,7 +3,9 @@ import itertools as it
|
||||
from PIL import Image
|
||||
from constants import *
|
||||
|
||||
def tex_to_image(expression, size = "\HUGE"):
|
||||
def tex_to_image(expression,
|
||||
size = "\HUGE",
|
||||
template_tex_file = TEMPLATE_TEX_FILE):
|
||||
"""
|
||||
Returns list of images for correpsonding with a list of expressions
|
||||
"""
|
||||
@ -27,7 +29,7 @@ def tex_to_image(expression, size = "\HUGE"):
|
||||
"at size %s to "%(size),
|
||||
filestem,
|
||||
])
|
||||
with open(TEMPLATE_TEX_FILE, "r") as infile:
|
||||
with open(template_tex_file, "r") as infile:
|
||||
body = infile.read()
|
||||
body = body.replace(SIZE_TO_REPLACE, size)
|
||||
body = body.replace(TEX_TEXT_TO_REPLACE, expression)
|
||||
|
Reference in New Issue
Block a user