mirror of
https://github.com/3b1b/manim.git
synced 2025-07-31 22:13:30 +08:00
Add 3D graphing via square approximation.
This commit is contained in:
@ -1,45 +1,37 @@
|
||||
|
||||
from helpers import *
|
||||
|
||||
from mobject.vectorized_mobject import VGroup, VMobject, VectorizedPoint
|
||||
from topics.geometry import Square, Line
|
||||
from scene import Scene
|
||||
from camera import Camera
|
||||
from animation.continual_animation import AmbientMovement
|
||||
from animation.transform import ApplyMethod
|
||||
import numpy as np
|
||||
|
||||
class CameraWithPerspective(Camera):
|
||||
CONFIG = {
|
||||
"camera_distance" : 20,
|
||||
}
|
||||
CONFIG = {'camera_distance': 20}
|
||||
|
||||
def points_to_pixel_coords(self, points):
|
||||
distance_ratios = np.divide(
|
||||
self.camera_distance,
|
||||
self.camera_distance - points[:,2]
|
||||
)
|
||||
distance_ratios = np.divide(self.camera_distance, self.camera_distance - points[:, 2])
|
||||
scale_factors = interpolate(0, 1, distance_ratios)
|
||||
adjusted_points = np.array(points)
|
||||
for i in 0, 1:
|
||||
adjusted_points[:,i] *= scale_factors
|
||||
for i in (0, 1):
|
||||
adjusted_points[(:, i)] *= scale_factors
|
||||
|
||||
return Camera.points_to_pixel_coords(self, adjusted_points)
|
||||
|
||||
|
||||
class ThreeDCamera(CameraWithPerspective):
|
||||
CONFIG = {
|
||||
"sun_vect" : 5*UP+LEFT,
|
||||
"shading_factor" : 0.2,
|
||||
"distance" : 5.,
|
||||
"default_distance" : 5.,
|
||||
"phi" : 0, #Angle off z axis
|
||||
"theta" : -TAU/4, #Rotation about z axis
|
||||
}
|
||||
CONFIG = {'sun_vect': 5 * UP + LEFT,
|
||||
'shading_factor': 0.2,
|
||||
'distance': 5.0,
|
||||
'default_distance': 5.0,
|
||||
'phi': 0,
|
||||
'theta': -TAU / 4}
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
Camera.__init__(self, *args, **kwargs)
|
||||
self.unit_sun_vect = self.sun_vect/np.linalg.norm(self.sun_vect)
|
||||
## rotation_mobject lives in the phi-theta-distance space
|
||||
self.unit_sun_vect = self.sun_vect / np.linalg.norm(self.sun_vect)
|
||||
self.rotation_mobject = VectorizedPoint()
|
||||
## moving_center lives in the x-y-z space
|
||||
## It representes the center of rotation
|
||||
self.moving_center = VectorizedPoint(self.space_center)
|
||||
self.set_position(self.phi, self.theta, self.distance)
|
||||
|
||||
@ -56,64 +48,56 @@ class ThreeDCamera(CameraWithPerspective):
|
||||
return self.modified_rgb(vmobject, vmobject.get_fill_rgb())
|
||||
|
||||
def get_shaded_rgb(self, rgb, normal_vect):
|
||||
brightness = np.dot(normal_vect, self.unit_sun_vect)**2
|
||||
brightness = np.dot(normal_vect, self.unit_sun_vect) ** 2
|
||||
if brightness > 0:
|
||||
alpha = self.shading_factor*brightness
|
||||
alpha = self.shading_factor * brightness
|
||||
return interpolate(rgb, np.ones(3), alpha)
|
||||
else:
|
||||
alpha = -self.shading_factor*brightness
|
||||
alpha = -self.shading_factor * brightness
|
||||
return interpolate(rgb, np.zeros(3), alpha)
|
||||
|
||||
def get_unit_normal_vect(self, vmobject):
|
||||
anchors = vmobject.get_anchors()
|
||||
if len(anchors) < 3:
|
||||
return OUT
|
||||
normal = np.cross(anchors[1]-anchors[0], anchors[2]-anchors[1])
|
||||
normal = np.cross(anchors[1] - anchors[0], anchors[2] - anchors[1])
|
||||
if normal[2] < 0:
|
||||
normal = -normal
|
||||
length = np.linalg.norm(normal)
|
||||
if length == 0:
|
||||
return OUT
|
||||
return normal/length
|
||||
return normal / length
|
||||
|
||||
def display_multiple_vectorized_mobjects(self, vmobjects):
|
||||
camera_point = self.spherical_coords_to_point(
|
||||
*self.get_spherical_coords()
|
||||
)
|
||||
camera_point = self.spherical_coords_to_point(*self.get_spherical_coords())
|
||||
|
||||
def z_cmp(*vmobs):
|
||||
# Compare to three dimensional mobjects based on
|
||||
# how close they are to the camera
|
||||
# return cmp(*[
|
||||
# -np.linalg.norm(vm.get_center()-camera_point)
|
||||
# for vm in vmobs
|
||||
# ])
|
||||
three_d_status = map(should_shade_in_3d, vmobs)
|
||||
has_points = [vm.get_num_points() > 0 for vm in vmobs]
|
||||
has_points = [ vm.get_num_points() > 0 for vm in vmobs ]
|
||||
if all(three_d_status) and all(has_points):
|
||||
cmp_vect = self.get_unit_normal_vect(vmobs[1])
|
||||
return cmp(*[
|
||||
np.dot(vm.get_center(), cmp_vect)
|
||||
for vm in vmobs
|
||||
])
|
||||
return cmp(*[ np.dot(vm.get_center(), cmp_vect) for vm in vmobs ])
|
||||
else:
|
||||
return 0
|
||||
Camera.display_multiple_vectorized_mobjects(
|
||||
self, sorted(vmobjects, cmp = z_cmp)
|
||||
)
|
||||
|
||||
Camera.display_multiple_vectorized_mobjects(self, sorted(vmobjects, cmp=z_cmp))
|
||||
|
||||
def get_spherical_coords(self, phi = None, theta = None, distance = None):
|
||||
curr_phi, curr_theta, curr_d = self.rotation_mobject.points[0]
|
||||
if phi is None: phi = curr_phi
|
||||
if theta is None: theta = curr_theta
|
||||
if distance is None: distance = curr_d
|
||||
if phi is None:
|
||||
phi = curr_phi
|
||||
if theta is None:
|
||||
theta = curr_theta
|
||||
if distance is None:
|
||||
distance = curr_d
|
||||
return np.array([phi, theta, distance])
|
||||
|
||||
def get_cartesian_coords(self, phi = None, theta = None, distance = None):
|
||||
spherical_coords_array = self.get_spherical_coords(phi,theta,distance)
|
||||
spherical_coords_array = self.get_spherical_coords(phi, theta, distance)
|
||||
phi2 = spherical_coords_array[0]
|
||||
theta2 = spherical_coords_array[1]
|
||||
d2 = spherical_coords_array[2]
|
||||
return self.spherical_coords_to_point(phi2,theta2,d2)
|
||||
return self.spherical_coords_to_point(phi2, theta2, d2)
|
||||
|
||||
def get_phi(self):
|
||||
return self.get_spherical_coords()[0]
|
||||
@ -125,11 +109,7 @@ class ThreeDCamera(CameraWithPerspective):
|
||||
return self.get_spherical_coords()[2]
|
||||
|
||||
def spherical_coords_to_point(self, phi, theta, distance):
|
||||
return distance*np.array([
|
||||
np.sin(phi)*np.cos(theta),
|
||||
np.sin(phi)*np.sin(theta),
|
||||
np.cos(phi)
|
||||
])
|
||||
return distance * np.array([np.sin(phi) * np.cos(theta), np.sin(phi) * np.sin(theta), np.cos(phi)])
|
||||
|
||||
def get_center_of_rotation(self, x = None, y = None, z = None):
|
||||
curr_x, curr_y, curr_z = self.moving_center.points[0]
|
||||
@ -141,8 +121,7 @@ class ThreeDCamera(CameraWithPerspective):
|
||||
z = curr_z
|
||||
return np.array([x, y, z])
|
||||
|
||||
def set_position(self, phi = None, theta = None, distance = None,
|
||||
center_x = None, center_y = None, center_z = None):
|
||||
def set_position(self, phi = None, theta = None, distance = None, center_x = None, center_y = None, center_z = None):
|
||||
point = self.get_spherical_coords(phi, theta, distance)
|
||||
self.rotation_mobject.move_to(point)
|
||||
self.phi, self.theta, self.distance = point
|
||||
@ -151,34 +130,24 @@ class ThreeDCamera(CameraWithPerspective):
|
||||
self.space_center = self.moving_center.points[0]
|
||||
|
||||
def get_view_transformation_matrix(self):
|
||||
return (self.default_distance / self.get_distance()) * np.dot(
|
||||
rotation_matrix(self.get_phi(), LEFT),
|
||||
rotation_about_z(-self.get_theta() - np.pi/2),
|
||||
)
|
||||
return self.default_distance / self.get_distance() * np.dot(rotation_matrix(self.get_phi(), LEFT), rotation_about_z(-self.get_theta() - np.pi / 2))
|
||||
|
||||
def points_to_pixel_coords(self, points):
|
||||
matrix = self.get_view_transformation_matrix()
|
||||
new_points = np.dot(points, matrix.T)
|
||||
self.space_center = self.moving_center.points[0]
|
||||
|
||||
return Camera.points_to_pixel_coords(self, new_points)
|
||||
|
||||
class ThreeDScene(Scene):
|
||||
CONFIG = {
|
||||
"camera_class" : ThreeDCamera,
|
||||
"ambient_camera_rotation" : None,
|
||||
}
|
||||
|
||||
def set_camera_position(self, phi = None, theta = None, distance = None,
|
||||
center_x = None, center_y = None, center_z = None):
|
||||
class ThreeDScene(Scene):
|
||||
CONFIG = {'camera_class': ThreeDCamera,
|
||||
'ambient_camera_rotation': None}
|
||||
|
||||
def set_camera_position(self, phi = None, theta = None, distance = None, center_x = None, center_y = None, center_z = None):
|
||||
self.camera.set_position(phi, theta, distance, center_x, center_y, center_z)
|
||||
|
||||
def begin_ambient_camera_rotation(self, rate = 0.01):
|
||||
self.ambient_camera_rotation = AmbientMovement(
|
||||
self.camera.rotation_mobject,
|
||||
direction = UP,
|
||||
rate = rate
|
||||
)
|
||||
self.ambient_camera_rotation = AmbientMovement(self.camera.rotation_mobject, direction=UP, rate=rate)
|
||||
self.add(self.ambient_camera_rotation)
|
||||
|
||||
def stop_ambient_camera_rotation(self):
|
||||
@ -186,25 +155,11 @@ class ThreeDScene(Scene):
|
||||
self.remove(self.ambient_camera_rotation)
|
||||
self.ambient_camera_rotation = None
|
||||
|
||||
def move_camera(
|
||||
self,
|
||||
phi = None, theta = None, distance = None,
|
||||
center_x = None, center_y = None, center_z = None,
|
||||
added_anims = [],
|
||||
**kwargs
|
||||
):
|
||||
def move_camera(self, phi = None, theta = None, distance = None, center_x = None, center_y = None, center_z = None, added_anims = [], **kwargs):
|
||||
target_point = self.camera.get_spherical_coords(phi, theta, distance)
|
||||
movement = ApplyMethod(
|
||||
self.camera.rotation_mobject.move_to,
|
||||
target_point,
|
||||
**kwargs
|
||||
)
|
||||
movement = ApplyMethod(self.camera.rotation_mobject.move_to, target_point, **kwargs)
|
||||
target_center = self.camera.get_center_of_rotation(center_x, center_y, center_z)
|
||||
movement_center = ApplyMethod(
|
||||
self.camera.moving_center.move_to,
|
||||
target_center,
|
||||
**kwargs
|
||||
)
|
||||
movement_center = ApplyMethod(self.camera.moving_center.move_to, target_center, **kwargs)
|
||||
is_camera_rotating = self.ambient_camera_rotation in self.continual_animations
|
||||
if is_camera_rotating:
|
||||
self.remove(self.ambient_camera_rotation)
|
||||
@ -219,71 +174,100 @@ class ThreeDScene(Scene):
|
||||
return list_update(self.mobjects, moving_mobjects)
|
||||
return moving_mobjects
|
||||
|
||||
##############
|
||||
|
||||
def should_shade_in_3d(mobject):
|
||||
return hasattr(mobject, "shade_in_3d") and mobject.shade_in_3d
|
||||
return hasattr(mobject, 'shade_in_3d') and mobject.shade_in_3d
|
||||
|
||||
|
||||
def shade_in_3d(mobject):
|
||||
for submob in mobject.submobject_family():
|
||||
submob.shade_in_3d = True
|
||||
|
||||
|
||||
def turn_off_3d_shading(mobject):
|
||||
for submob in mobject.submobject_family():
|
||||
submob.shade_in_3d = False
|
||||
|
||||
|
||||
class ThreeDMobject(VMobject):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
VMobject.__init__(self, *args, **kwargs)
|
||||
shade_in_3d(self)
|
||||
|
||||
class Cube(ThreeDMobject):
|
||||
CONFIG = {
|
||||
"fill_opacity" : 0.75,
|
||||
"fill_color" : BLUE,
|
||||
"stroke_width" : 0,
|
||||
"propagate_style_to_family" : True,
|
||||
"side_length" : 2,
|
||||
}
|
||||
def generate_points(self):
|
||||
for vect in IN, OUT, LEFT, RIGHT, UP, DOWN:
|
||||
face = Square(side_length = self.side_length)
|
||||
face.shift(self.side_length*OUT/2.0)
|
||||
face.apply_function(lambda p : np.dot(p, z_to_vector(vect).T))
|
||||
|
||||
class Cube(ThreeDMobject):
|
||||
CONFIG = {'fill_opacity': 0.75,
|
||||
'fill_color': BLUE,
|
||||
'stroke_width': 0,
|
||||
'propagate_style_to_family': True,
|
||||
'side_length': 2}
|
||||
|
||||
def generate_points(self):
|
||||
for vect in (IN,
|
||||
OUT,
|
||||
LEFT,
|
||||
RIGHT,
|
||||
UP,
|
||||
DOWN):
|
||||
face = Square(side_length=self.side_length)
|
||||
face.shift(self.side_length * OUT / 2.0)
|
||||
face.apply_function(lambda p: np.dot(p, z_to_vector(vect).T))
|
||||
self.add(face)
|
||||
|
||||
|
||||
class SphereThreeD(ThreeDMobject):
|
||||
|
||||
def __init__(self, r, eps):
|
||||
self.r = r
|
||||
self.eps = eps
|
||||
ThreeDMobject.__init__(self)
|
||||
|
||||
CONFIG = {'fill_opacity': 0.75,
|
||||
'fill_color': BLUE,
|
||||
'stroke_width': 0,
|
||||
'propagate_style_to_family': True,
|
||||
'side_length': 2}
|
||||
|
||||
def generate_points(self):
|
||||
points = [ (self.r * (np.sin(phi) * np.cos(theta)), self.r * (np.sin(phi) * np.sin(theta)), self.r * np.cos(phi)) for phi in np.arange(0, 2 * np.pi, self.eps) for theta in np.arange(0, 2 * np.pi, self.eps) ]
|
||||
for vect in points:
|
||||
face = Square(side_length=self.eps)
|
||||
face.apply_function(lambda p: np.dot(p, z_to_vector(vect).T))
|
||||
self.add(face)
|
||||
|
||||
|
||||
class Parametric3D(ThreeDMobject):
|
||||
CONFIG = {'fill_opacity': 0.75,
|
||||
'fill_color': BLUE,
|
||||
'stroke_width': 0,
|
||||
'propagate_style_to_family': True}
|
||||
|
||||
def __init__(self, f, g, h, phi_min, phi_max, theta_min, theta_max, eps):
|
||||
self.f = f
|
||||
self.g = g
|
||||
self.h = h
|
||||
self.phi_min = phi_min
|
||||
self.phi_max = phi_max
|
||||
self.theta_min = theta_min
|
||||
self.theta_max = theta_max
|
||||
self.eps = eps
|
||||
ThreeDMobject.__init__(self)
|
||||
|
||||
def generate_points(self):
|
||||
points = [ (self.f(phi, theta), self.g(phi, theta), self.h(phi, theta)) for phi in np.arange(self.phi_min, self.phi_max, self.eps) for theta in np.arange(self.theta_min, self.theta_max, self.eps) ]
|
||||
for vect in points:
|
||||
face = Square(side_length=self.eps)
|
||||
scalefactor = np.linalg.norm(vect)
|
||||
face.shift(scalefactor * OUT / 2.0)
|
||||
face.apply_function(lambda p: np.dot(p, z_to_vector(vect).T))
|
||||
self.add(face)
|
||||
|
||||
|
||||
class Prism(Cube):
|
||||
CONFIG = {
|
||||
"dimensions" : [3, 2, 1]
|
||||
}
|
||||
CONFIG = {'dimensions': [3, 2, 1]}
|
||||
|
||||
def generate_points(self):
|
||||
Cube.generate_points(self)
|
||||
for dim, value in enumerate(self.dimensions):
|
||||
self.rescale_to_fit(value, dim, stretch = True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
self.rescale_to_fit(value, dim, stretch=True)
|
Reference in New Issue
Block a user