mirror of
https://github.com/3b1b/manim.git
synced 2025-08-05 22:03:01 +08:00
Changed all files to (mostly) conform to PEP8
This commit is contained in:
@ -1,34 +1,22 @@
|
||||
from constants import *
|
||||
|
||||
from mobject.geometry import AnnularSector
|
||||
from mobject.geometry import Arc
|
||||
from mobject.geometry import Annulus
|
||||
from mobject.mobject import Mobject
|
||||
from mobject.svg.svg_mobject import SVGMobject
|
||||
from mobject.svg.tex_mobject import TexMobject
|
||||
from mobject.types.vectorized_mobject import VGroup
|
||||
from mobject.types.vectorized_mobject import VMobject
|
||||
from mobject.types.vectorized_mobject import VectorizedPoint
|
||||
|
||||
from continual_animation.continual_animation import ContinualAnimation
|
||||
|
||||
from animation.animation import Animation
|
||||
from animation.composition import LaggedStart
|
||||
from animation.transform import ApplyMethod
|
||||
from animation.transform import Transform
|
||||
from animation.creation import FadeIn
|
||||
from animation.creation import FadeOut
|
||||
|
||||
from camera.camera import Camera
|
||||
from scene.scene import Scene
|
||||
from camera.three_d_camera import ThreeDCamera
|
||||
from scene.three_d_scene import ThreeDScene
|
||||
|
||||
from utils.space_ops import angle_between
|
||||
from utils.space_ops import angle_between_vectors
|
||||
from utils.space_ops import project_along_vector
|
||||
from utils.space_ops import rotate_vector
|
||||
from utils.space_ops import rotation_matrix
|
||||
from utils.space_ops import z_to_vector
|
||||
|
||||
from scipy.spatial import ConvexHull
|
||||
@ -39,8 +27,8 @@ SHADOW_COLOR = BLACK
|
||||
SWITCH_ON_RUN_TIME = 1.5
|
||||
FAST_SWITCH_ON_RUN_TIME = 0.1
|
||||
NUM_LEVELS = 30
|
||||
NUM_CONES = 7 # in first lighthouse scene
|
||||
NUM_VISIBLE_CONES = 5 # ibidem
|
||||
NUM_CONES = 7 # in first lighthouse scene
|
||||
NUM_VISIBLE_CONES = 5 # ibidem
|
||||
ARC_TIP_LENGTH = 0.2
|
||||
AMBIENT_FULL = 0.8
|
||||
AMBIENT_DIMMED = 0.5
|
||||
@ -48,11 +36,15 @@ SPOTLIGHT_FULL = 0.8
|
||||
SPOTLIGHT_DIMMED = 0.5
|
||||
LIGHTHOUSE_HEIGHT = 0.8
|
||||
|
||||
DEGREES = TAU/360
|
||||
DEGREES = TAU / 360
|
||||
|
||||
inverse_power_law = lambda maxint,scale,cutoff,exponent: \
|
||||
(lambda r: maxint * (cutoff/(r/scale+cutoff))**exponent)
|
||||
inverse_quadratic = lambda maxint,scale,cutoff: inverse_power_law(maxint,scale,cutoff,2)
|
||||
|
||||
def inverse_power_law(maxint, scale, cutoff, exponent):
|
||||
return (lambda r: maxint * (cutoff / (r / scale + cutoff))**exponent)
|
||||
|
||||
|
||||
def inverse_quadratic(maxint, scale, cutoff):
|
||||
return inverse_power_law(maxint, scale, cutoff, 2)
|
||||
|
||||
|
||||
class SwitchOn(LaggedStart):
|
||||
@ -62,12 +54,14 @@ class SwitchOn(LaggedStart):
|
||||
}
|
||||
|
||||
def __init__(self, light, **kwargs):
|
||||
if (not isinstance(light,AmbientLight) and not isinstance(light,Spotlight)):
|
||||
raise Exception("Only AmbientLights and Spotlights can be switched on")
|
||||
if (not isinstance(light, AmbientLight) and not isinstance(light, Spotlight)):
|
||||
raise Exception(
|
||||
"Only AmbientLights and Spotlights can be switched on")
|
||||
LaggedStart.__init__(
|
||||
self, FadeIn, light, **kwargs
|
||||
)
|
||||
|
||||
|
||||
class SwitchOff(LaggedStart):
|
||||
CONFIG = {
|
||||
"lag_ratio": 0.2,
|
||||
@ -75,23 +69,26 @@ class SwitchOff(LaggedStart):
|
||||
}
|
||||
|
||||
def __init__(self, light, **kwargs):
|
||||
if (not isinstance(light,AmbientLight) and not isinstance(light,Spotlight)):
|
||||
raise Exception("Only AmbientLights and Spotlights can be switched off")
|
||||
if (not isinstance(light, AmbientLight) and not isinstance(light, Spotlight)):
|
||||
raise Exception(
|
||||
"Only AmbientLights and Spotlights can be switched off")
|
||||
light.submobjects = light.submobjects[::-1]
|
||||
LaggedStart.__init__(self,
|
||||
FadeOut, light, **kwargs)
|
||||
FadeOut, light, **kwargs)
|
||||
light.submobjects = light.submobjects[::-1]
|
||||
|
||||
|
||||
class Lighthouse(SVGMobject):
|
||||
CONFIG = {
|
||||
"file_name" : "lighthouse",
|
||||
"height" : LIGHTHOUSE_HEIGHT,
|
||||
"fill_color" : WHITE,
|
||||
"fill_opacity" : 1.0,
|
||||
"file_name": "lighthouse",
|
||||
"height": LIGHTHOUSE_HEIGHT,
|
||||
"fill_color": WHITE,
|
||||
"fill_opacity": 1.0,
|
||||
}
|
||||
|
||||
def move_to(self,point):
|
||||
self.next_to(point, DOWN, buff = 0)
|
||||
def move_to(self, point):
|
||||
self.next_to(point, DOWN, buff=0)
|
||||
|
||||
|
||||
class AmbientLight(VMobject):
|
||||
|
||||
@ -104,18 +101,18 @@ class AmbientLight(VMobject):
|
||||
# * the number of subdivisions (levels, annuli)
|
||||
|
||||
CONFIG = {
|
||||
"source_point": VectorizedPoint(location = ORIGIN, stroke_width = 0, fill_opacity = 0),
|
||||
"opacity_function" : lambda r : 1.0/(r+1.0)**2,
|
||||
"color" : LIGHT_COLOR,
|
||||
"max_opacity" : 1.0,
|
||||
"num_levels" : NUM_LEVELS,
|
||||
"radius" : 5.0
|
||||
"source_point": VectorizedPoint(location=ORIGIN, stroke_width=0, fill_opacity=0),
|
||||
"opacity_function": lambda r: 1.0 / (r + 1.0)**2,
|
||||
"color": LIGHT_COLOR,
|
||||
"max_opacity": 1.0,
|
||||
"num_levels": NUM_LEVELS,
|
||||
"radius": 5.0
|
||||
}
|
||||
|
||||
def generate_points(self):
|
||||
# in theory, this method is only called once, right?
|
||||
# so removing submobs shd not be necessary
|
||||
#
|
||||
#
|
||||
# Note: Usually, yes, it is only called within Mobject.__init__,
|
||||
# but there is no strong guarantee of that, and you may want certain
|
||||
# update functions to regenerate points here and there.
|
||||
@ -130,71 +127,61 @@ class AmbientLight(VMobject):
|
||||
for r in np.arange(0, self.radius, dr):
|
||||
alpha = self.max_opacity * self.opacity_function(r)
|
||||
annulus = Annulus(
|
||||
inner_radius = r,
|
||||
outer_radius = r + dr,
|
||||
color = self.color,
|
||||
fill_opacity = alpha
|
||||
inner_radius=r,
|
||||
outer_radius=r + dr,
|
||||
color=self.color,
|
||||
fill_opacity=alpha
|
||||
)
|
||||
annulus.move_to(self.get_source_point())
|
||||
self.add(annulus)
|
||||
|
||||
|
||||
|
||||
def move_source_to(self,point):
|
||||
#old_source_point = self.get_source_point()
|
||||
#self.shift(point - old_source_point)
|
||||
def move_source_to(self, point):
|
||||
# old_source_point = self.get_source_point()
|
||||
# self.shift(point - old_source_point)
|
||||
self.move_to(point)
|
||||
|
||||
return self
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_source_point(self):
|
||||
return self.source_point.get_location()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def dimming(self,new_alpha):
|
||||
def dimming(self, new_alpha):
|
||||
old_alpha = self.max_opacity
|
||||
self.max_opacity = new_alpha
|
||||
for submob in self.submobjects:
|
||||
old_submob_alpha = submob.fill_opacity
|
||||
new_submob_alpha = old_submob_alpha * new_alpha / old_alpha
|
||||
submob.set_fill(opacity = new_submob_alpha)
|
||||
submob.set_fill(opacity=new_submob_alpha)
|
||||
|
||||
|
||||
class Spotlight(VMobject):
|
||||
CONFIG = {
|
||||
"source_point": VectorizedPoint(location = ORIGIN, stroke_width = 0, fill_opacity = 0),
|
||||
"opacity_function" : lambda r : 1.0/(r/2+1.0)**2,
|
||||
"color" : GREEN, # LIGHT_COLOR,
|
||||
"max_opacity" : 1.0,
|
||||
"num_levels" : 10,
|
||||
"radius" : 10.0,
|
||||
"screen" : None,
|
||||
"source_point": VectorizedPoint(location=ORIGIN, stroke_width=0, fill_opacity=0),
|
||||
"opacity_function": lambda r: 1.0 / (r / 2 + 1.0)**2,
|
||||
"color": GREEN, # LIGHT_COLOR,
|
||||
"max_opacity": 1.0,
|
||||
"num_levels": 10,
|
||||
"radius": 10.0,
|
||||
"screen": None,
|
||||
"camera_mob": None
|
||||
}
|
||||
|
||||
def projection_direction(self):
|
||||
# Note: This seems reasonable, though for it to work you'd
|
||||
# need to be sure that any 3d scene including a spotlight
|
||||
# somewhere assigns that spotlights "camera" attribute
|
||||
# need to be sure that any 3d scene including a spotlight
|
||||
# somewhere assigns that spotlights "camera" attribute
|
||||
# to be the camera associated with that scene.
|
||||
if self.camera_mob == None:
|
||||
if self.camera_mob is None:
|
||||
return OUT
|
||||
else:
|
||||
[phi, theta, r] = self.camera_mob.get_center()
|
||||
v = np.array([np.sin(phi)*np.cos(theta), np.sin(phi)*np.sin(theta), np.cos(phi)])
|
||||
return v #/np.linalg.norm(v)
|
||||
v = np.array([np.sin(phi) * np.cos(theta),
|
||||
np.sin(phi) * np.sin(theta), np.cos(phi)])
|
||||
return v # /np.linalg.norm(v)
|
||||
|
||||
def project(self,point):
|
||||
def project(self, point):
|
||||
v = self.projection_direction()
|
||||
w = project_along_vector(point,v)
|
||||
w = project_along_vector(point, v)
|
||||
return w
|
||||
|
||||
def get_source_point(self):
|
||||
@ -205,7 +192,7 @@ class Spotlight(VMobject):
|
||||
|
||||
self.add(self.source_point)
|
||||
|
||||
if self.screen != None:
|
||||
if self.screen is not None:
|
||||
# look for the screen and create annular sectors
|
||||
lower_angle, upper_angle = self.viewing_angles(self.screen)
|
||||
self.radius = float(self.radius)
|
||||
@ -213,18 +200,18 @@ class Spotlight(VMobject):
|
||||
lower_ray, upper_ray = self.viewing_rays(self.screen)
|
||||
|
||||
for r in np.arange(0, self.radius, dr):
|
||||
new_sector = self.new_sector(r,dr,lower_angle,upper_angle)
|
||||
new_sector = self.new_sector(r, dr, lower_angle, upper_angle)
|
||||
self.add(new_sector)
|
||||
|
||||
def new_sector(self,r,dr,lower_angle,upper_angle):
|
||||
def new_sector(self, r, dr, lower_angle, upper_angle):
|
||||
alpha = self.max_opacity * self.opacity_function(r)
|
||||
annular_sector = AnnularSector(
|
||||
inner_radius = r,
|
||||
outer_radius = r + dr,
|
||||
color = self.color,
|
||||
fill_opacity = alpha,
|
||||
start_angle = lower_angle,
|
||||
angle = upper_angle - lower_angle
|
||||
inner_radius=r,
|
||||
outer_radius=r + dr,
|
||||
color=self.color,
|
||||
fill_opacity=alpha,
|
||||
start_angle=lower_angle,
|
||||
angle=upper_angle - lower_angle
|
||||
)
|
||||
# rotate (not project) it into the viewing plane
|
||||
rotation_matrix = z_to_vector(self.projection_direction())
|
||||
@ -232,13 +219,13 @@ class Spotlight(VMobject):
|
||||
# now rotate it inside that plane
|
||||
rotated_RIGHT = np.dot(RIGHT, rotation_matrix.T)
|
||||
projected_RIGHT = self.project(RIGHT)
|
||||
omega = angle_between_vectors(rotated_RIGHT,projected_RIGHT)
|
||||
annular_sector.rotate(omega, axis = self.projection_direction())
|
||||
omega = angle_between_vectors(rotated_RIGHT, projected_RIGHT)
|
||||
annular_sector.rotate(omega, axis=self.projection_direction())
|
||||
annular_sector.move_arc_center_to(self.get_source_point())
|
||||
|
||||
return annular_sector
|
||||
|
||||
def viewing_angle_of_point(self,point):
|
||||
def viewing_angle_of_point(self, point):
|
||||
# as measured from the positive x-axis
|
||||
v1 = self.project(RIGHT)
|
||||
v2 = self.project(np.array(point) - self.get_source_point())
|
||||
@ -247,63 +234,66 @@ class Spotlight(VMobject):
|
||||
# choice of orientation. That choice is set by the camera
|
||||
# position, i. e. projection direction
|
||||
|
||||
if np.dot(self.projection_direction(),np.cross(v1, v2)) > 0:
|
||||
if np.dot(self.projection_direction(), np.cross(v1, v2)) > 0:
|
||||
return absolute_angle
|
||||
else:
|
||||
return -absolute_angle
|
||||
|
||||
def viewing_angles(self,screen):
|
||||
def viewing_angles(self, screen):
|
||||
|
||||
screen_points = screen.get_anchors()
|
||||
projected_screen_points = map(self.project,screen_points)
|
||||
projected_screen_points = map(self.project, screen_points)
|
||||
|
||||
viewing_angles = np.array(map(self.viewing_angle_of_point,
|
||||
projected_screen_points))
|
||||
projected_screen_points))
|
||||
|
||||
lower_angle = upper_angle = 0
|
||||
if len(viewing_angles) != 0:
|
||||
lower_angle = np.min(viewing_angles)
|
||||
upper_angle = np.max(viewing_angles)
|
||||
|
||||
if upper_angle - lower_angle > TAU/2:
|
||||
if upper_angle - lower_angle > TAU / 2:
|
||||
lower_angle, upper_angle = upper_angle, lower_angle + TAU
|
||||
return lower_angle, upper_angle
|
||||
|
||||
def viewing_rays(self,screen):
|
||||
def viewing_rays(self, screen):
|
||||
|
||||
lower_angle, upper_angle = self.viewing_angles(screen)
|
||||
projected_RIGHT = self.project(RIGHT)/np.linalg.norm(self.project(RIGHT))
|
||||
lower_ray = rotate_vector(projected_RIGHT,lower_angle, axis = self.projection_direction())
|
||||
upper_ray = rotate_vector(projected_RIGHT,upper_angle, axis = self.projection_direction())
|
||||
|
||||
projected_RIGHT = self.project(
|
||||
RIGHT) / np.linalg.norm(self.project(RIGHT))
|
||||
lower_ray = rotate_vector(
|
||||
projected_RIGHT, lower_angle, axis=self.projection_direction())
|
||||
upper_ray = rotate_vector(
|
||||
projected_RIGHT, upper_angle, axis=self.projection_direction())
|
||||
|
||||
return lower_ray, upper_ray
|
||||
|
||||
def opening_angle(self):
|
||||
l,u = self.viewing_angles(self.screen)
|
||||
l, u = self.viewing_angles(self.screen)
|
||||
return u - l
|
||||
|
||||
def start_angle(self):
|
||||
l,u = self.viewing_angles(self.screen)
|
||||
l, u = self.viewing_angles(self.screen)
|
||||
return l
|
||||
|
||||
def stop_angle(self):
|
||||
l,u = self.viewing_angles(self.screen)
|
||||
l, u = self.viewing_angles(self.screen)
|
||||
return u
|
||||
|
||||
def move_source_to(self,point):
|
||||
def move_source_to(self, point):
|
||||
self.source_point.set_location(np.array(point))
|
||||
#self.source_point.move_to(np.array(point))
|
||||
#self.move_to(point)
|
||||
# self.source_point.move_to(np.array(point))
|
||||
# self.move_to(point)
|
||||
self.update_sectors()
|
||||
return self
|
||||
|
||||
def update_sectors(self):
|
||||
if self.screen == None:
|
||||
if self.screen is None:
|
||||
return
|
||||
for submob in self.submobjects:
|
||||
if type(submob) == AnnularSector:
|
||||
lower_angle, upper_angle = self.viewing_angles(self.screen)
|
||||
#dr = submob.outer_radius - submob.inner_radius
|
||||
# dr = submob.outer_radius - submob.inner_radius
|
||||
dr = self.radius / self.num_levels
|
||||
new_submob = self.new_sector(
|
||||
submob.inner_radius, dr, lower_angle, upper_angle
|
||||
@ -312,7 +302,7 @@ class Spotlight(VMobject):
|
||||
# submob.set_fill(opacity = 10 * self.opacity_function(submob.outer_radius))
|
||||
Transform(submob, new_submob).update(1)
|
||||
|
||||
def dimming(self,new_alpha):
|
||||
def dimming(self, new_alpha):
|
||||
old_alpha = self.max_opacity
|
||||
self.max_opacity = new_alpha
|
||||
for submob in self.submobjects:
|
||||
@ -322,26 +312,28 @@ class Spotlight(VMobject):
|
||||
# it's the shadow, don't dim it
|
||||
continue
|
||||
old_submob_alpha = submob.fill_opacity
|
||||
new_submob_alpha = old_submob_alpha * new_alpha/old_alpha
|
||||
submob.set_fill(opacity = new_submob_alpha)
|
||||
new_submob_alpha = old_submob_alpha * new_alpha / old_alpha
|
||||
submob.set_fill(opacity=new_submob_alpha)
|
||||
|
||||
def change_opacity_function(self,new_f):
|
||||
def change_opacity_function(self, new_f):
|
||||
self.opacity_function = new_f
|
||||
dr = self.radius/self.num_levels
|
||||
dr = self.radius / self.num_levels
|
||||
|
||||
sectors = []
|
||||
for submob in self.submobjects:
|
||||
if type(submob) == AnnularSector:
|
||||
sectors.append(submob)
|
||||
|
||||
for (r,submob) in zip(np.arange(0,self.radius,dr),sectors):
|
||||
for (r, submob) in zip(np.arange(0, self.radius, dr), sectors):
|
||||
if type(submob) != AnnularSector:
|
||||
# it's the shadow, don't dim it
|
||||
continue
|
||||
alpha = self.opacity_function(r)
|
||||
submob.set_fill(opacity = alpha)
|
||||
submob.set_fill(opacity=alpha)
|
||||
|
||||
# Warning: This class is likely quite buggy.
|
||||
|
||||
|
||||
class LightSource(VMobject):
|
||||
# combines:
|
||||
# a lighthouse
|
||||
@ -349,12 +341,12 @@ class LightSource(VMobject):
|
||||
# a spotlight
|
||||
# and a shadow
|
||||
CONFIG = {
|
||||
"source_point": VectorizedPoint(location = ORIGIN, stroke_width = 0, fill_opacity = 0),
|
||||
"source_point": VectorizedPoint(location=ORIGIN, stroke_width=0, fill_opacity=0),
|
||||
"color": LIGHT_COLOR,
|
||||
"num_levels": 10,
|
||||
"radius": 10.0,
|
||||
"screen": None,
|
||||
"opacity_function": inverse_quadratic(1,2,1),
|
||||
"opacity_function": inverse_quadratic(1, 2, 1),
|
||||
"max_opacity_ambient": AMBIENT_FULL,
|
||||
"max_opacity_spotlight": SPOTLIGHT_FULL,
|
||||
"camera_mob": None
|
||||
@ -366,39 +358,41 @@ class LightSource(VMobject):
|
||||
|
||||
self.lighthouse = Lighthouse()
|
||||
self.ambient_light = AmbientLight(
|
||||
source_point = VectorizedPoint(location = self.get_source_point()),
|
||||
color = self.color,
|
||||
num_levels = self.num_levels,
|
||||
radius = self.radius,
|
||||
opacity_function = self.opacity_function,
|
||||
max_opacity = self.max_opacity_ambient
|
||||
source_point=VectorizedPoint(location=self.get_source_point()),
|
||||
color=self.color,
|
||||
num_levels=self.num_levels,
|
||||
radius=self.radius,
|
||||
opacity_function=self.opacity_function,
|
||||
max_opacity=self.max_opacity_ambient
|
||||
)
|
||||
if self.has_screen():
|
||||
self.spotlight = Spotlight(
|
||||
source_point = VectorizedPoint(location = self.get_source_point()),
|
||||
color = self.color,
|
||||
num_levels = self.num_levels,
|
||||
radius = self.radius,
|
||||
screen = self.screen,
|
||||
opacity_function = self.opacity_function,
|
||||
max_opacity = self.max_opacity_spotlight,
|
||||
camera_mob = self.camera_mob
|
||||
source_point=VectorizedPoint(location=self.get_source_point()),
|
||||
color=self.color,
|
||||
num_levels=self.num_levels,
|
||||
radius=self.radius,
|
||||
screen=self.screen,
|
||||
opacity_function=self.opacity_function,
|
||||
max_opacity=self.max_opacity_spotlight,
|
||||
camera_mob=self.camera_mob
|
||||
)
|
||||
else:
|
||||
self.spotlight = Spotlight()
|
||||
|
||||
self.shadow = VMobject(fill_color = SHADOW_COLOR, fill_opacity = 1.0, stroke_color = BLACK)
|
||||
self.lighthouse.next_to(self.get_source_point(),DOWN,buff = 0)
|
||||
self.shadow = VMobject(fill_color=SHADOW_COLOR,
|
||||
fill_opacity=1.0, stroke_color=BLACK)
|
||||
self.lighthouse.next_to(self.get_source_point(), DOWN, buff=0)
|
||||
self.ambient_light.move_source_to(self.get_source_point())
|
||||
|
||||
if self.has_screen():
|
||||
self.spotlight.move_source_to(self.get_source_point())
|
||||
self.update_shadow()
|
||||
|
||||
self.add(self.ambient_light,self.spotlight,self.lighthouse, self.shadow)
|
||||
self.add(self.ambient_light, self.spotlight,
|
||||
self.lighthouse, self.shadow)
|
||||
|
||||
def has_screen(self):
|
||||
if self.screen == None:
|
||||
if self.screen is None:
|
||||
return False
|
||||
elif np.size(self.screen.points) == 0:
|
||||
return False
|
||||
@ -408,18 +402,18 @@ class LightSource(VMobject):
|
||||
def dim_ambient(self):
|
||||
self.set_max_opacity_ambient(AMBIENT_DIMMED)
|
||||
|
||||
def set_max_opacity_ambient(self,new_opacity):
|
||||
def set_max_opacity_ambient(self, new_opacity):
|
||||
self.max_opacity_ambient = new_opacity
|
||||
self.ambient_light.dimming(new_opacity)
|
||||
|
||||
def dim_spotlight(self):
|
||||
self.set_max_opacity_spotlight(SPOTLIGHT_DIMMED)
|
||||
|
||||
def set_max_opacity_spotlight(self,new_opacity):
|
||||
def set_max_opacity_spotlight(self, new_opacity):
|
||||
self.max_opacity_spotlight = new_opacity
|
||||
self.spotlight.dimming(new_opacity)
|
||||
|
||||
def set_camera_mob(self,new_cam_mob):
|
||||
def set_camera_mob(self, new_cam_mob):
|
||||
self.camera_mob = new_cam_mob
|
||||
self.spotlight.camera_mob = new_cam_mob
|
||||
|
||||
@ -432,40 +426,40 @@ class LightSource(VMobject):
|
||||
camera_mob = self.spotlight.camera_mob
|
||||
self.remove(self.spotlight)
|
||||
self.spotlight = Spotlight(
|
||||
source_point = VectorizedPoint(location = self.get_source_point()),
|
||||
color = self.color,
|
||||
num_levels = self.num_levels,
|
||||
radius = self.radius,
|
||||
screen = new_screen,
|
||||
camera_mob = self.camera_mob,
|
||||
opacity_function = self.opacity_function,
|
||||
max_opacity = self.max_opacity_spotlight,
|
||||
source_point=VectorizedPoint(location=self.get_source_point()),
|
||||
color=self.color,
|
||||
num_levels=self.num_levels,
|
||||
radius=self.radius,
|
||||
screen=new_screen,
|
||||
camera_mob=self.camera_mob,
|
||||
opacity_function=self.opacity_function,
|
||||
max_opacity=self.max_opacity_spotlight,
|
||||
)
|
||||
self.spotlight.move_source_to(self.get_source_point())
|
||||
|
||||
# Note: This line will make spotlight show up at the end
|
||||
# of the submojects list, which can make it show up on
|
||||
# top of the shadow. To make it show up in the
|
||||
# same spot, you could try the following line,
|
||||
# same spot, you could try the following line,
|
||||
# where "index" is what I defined above:
|
||||
self.submobjects.insert(index, self.spotlight)
|
||||
#self.add(self.spotlight)
|
||||
|
||||
# self.add(self.spotlight)
|
||||
|
||||
# in any case
|
||||
self.screen = new_screen
|
||||
|
||||
def move_source_to(self,point):
|
||||
def move_source_to(self, point):
|
||||
apoint = np.array(point)
|
||||
v = apoint - self.get_source_point()
|
||||
# Note: As discussed, things stand to behave better if source
|
||||
# point is a submobject, so that it automatically interpolates
|
||||
# during an animation, and other updates can be defined wrt
|
||||
# during an animation, and other updates can be defined wrt
|
||||
# that source point's location
|
||||
self.source_point.set_location(apoint)
|
||||
#self.lighthouse.next_to(apoint,DOWN,buff = 0)
|
||||
#self.ambient_light.move_source_to(apoint)
|
||||
# self.lighthouse.next_to(apoint,DOWN,buff = 0)
|
||||
# self.ambient_light.move_source_to(apoint)
|
||||
self.lighthouse.shift(v)
|
||||
#self.ambient_light.shift(v)
|
||||
# self.ambient_light.shift(v)
|
||||
self.ambient_light.move_source_to(apoint)
|
||||
if self.has_screen():
|
||||
self.spotlight.move_source_to(apoint)
|
||||
@ -474,8 +468,8 @@ class LightSource(VMobject):
|
||||
|
||||
def change_spotlight_opacity_function(self, new_of):
|
||||
self.spotlight.change_opacity_function(new_of)
|
||||
|
||||
def set_radius(self,new_radius):
|
||||
|
||||
def set_radius(self, new_radius):
|
||||
self.radius = new_radius
|
||||
self.ambient_light.radius = new_radius
|
||||
self.spotlight.radius = new_radius
|
||||
@ -496,12 +490,12 @@ class LightSource(VMobject):
|
||||
|
||||
def update_ambient(self):
|
||||
new_ambient_light = AmbientLight(
|
||||
source_point = VectorizedPoint(location = ORIGIN),
|
||||
color = self.color,
|
||||
num_levels = self.num_levels,
|
||||
radius = self.radius,
|
||||
opacity_function = self.opacity_function,
|
||||
max_opacity = self.max_opacity_ambient
|
||||
source_point=VectorizedPoint(location=ORIGIN),
|
||||
color=self.color,
|
||||
num_levels=self.num_levels,
|
||||
radius=self.radius,
|
||||
opacity_function=self.opacity_function,
|
||||
max_opacity=self.max_opacity_ambient
|
||||
)
|
||||
new_ambient_light.apply_matrix(self.rotation_matrix())
|
||||
new_ambient_light.move_source_to(self.get_source_point())
|
||||
@ -512,13 +506,12 @@ class LightSource(VMobject):
|
||||
|
||||
def rotation_matrix(self):
|
||||
|
||||
if self.camera_mob == None:
|
||||
if self.camera_mob is None:
|
||||
return np.eye(3)
|
||||
|
||||
phi = self.camera_mob.get_center()[0]
|
||||
theta = self.camera_mob.get_center()[1]
|
||||
|
||||
|
||||
R1 = np.array([
|
||||
[1, 0, 0],
|
||||
[0, np.cos(phi), -np.sin(phi)],
|
||||
@ -526,8 +519,8 @@ class LightSource(VMobject):
|
||||
])
|
||||
|
||||
R2 = np.array([
|
||||
[np.cos(theta + TAU/4), -np.sin(theta + TAU/4), 0],
|
||||
[np.sin(theta + TAU/4), np.cos(theta + TAU/4), 0],
|
||||
[np.cos(theta + TAU / 4), -np.sin(theta + TAU / 4), 0],
|
||||
[np.sin(theta + TAU / 4), np.cos(theta + TAU / 4), 0],
|
||||
[0, 0, 1]
|
||||
])
|
||||
|
||||
@ -542,28 +535,31 @@ class LightSource(VMobject):
|
||||
for point in self.screen.get_anchors():
|
||||
projected_screen_points.append(self.spotlight.project(point))
|
||||
|
||||
|
||||
projected_source = project_along_vector(self.get_source_point(),self.spotlight.projection_direction())
|
||||
projected_source = project_along_vector(
|
||||
self.get_source_point(), self.spotlight.projection_direction())
|
||||
|
||||
projected_point_cloud_3d = np.append(
|
||||
projected_screen_points,
|
||||
np.reshape(projected_source,(1,3)),
|
||||
axis = 0
|
||||
np.reshape(projected_source, (1, 3)),
|
||||
axis=0
|
||||
)
|
||||
rotation_matrix = self.rotation_matrix() # z_to_vector(self.spotlight.projection_direction())
|
||||
back_rotation_matrix = rotation_matrix.T # i. e. its inverse
|
||||
# z_to_vector(self.spotlight.projection_direction())
|
||||
rotation_matrix = self.rotation_matrix()
|
||||
back_rotation_matrix = rotation_matrix.T # i. e. its inverse
|
||||
|
||||
rotated_point_cloud_3d = np.dot(projected_point_cloud_3d,back_rotation_matrix.T)
|
||||
rotated_point_cloud_3d = np.dot(
|
||||
projected_point_cloud_3d, back_rotation_matrix.T)
|
||||
# these points now should all have z = 0
|
||||
|
||||
point_cloud_2d = rotated_point_cloud_3d[:,:2]
|
||||
point_cloud_2d = rotated_point_cloud_3d[:, :2]
|
||||
# now we can compute the convex hull
|
||||
hull_2d = ConvexHull(point_cloud_2d) # guaranteed to run ccw
|
||||
hull_2d = ConvexHull(point_cloud_2d) # guaranteed to run ccw
|
||||
hull = []
|
||||
|
||||
# we also need the projected source point
|
||||
source_point_2d = np.dot(self.spotlight.project(self.get_source_point()),back_rotation_matrix.T)[:2]
|
||||
|
||||
source_point_2d = np.dot(self.spotlight.project(
|
||||
self.get_source_point()), back_rotation_matrix.T)[:2]
|
||||
|
||||
index = 0
|
||||
for point in point_cloud_2d[hull_2d.vertices]:
|
||||
if np.all(np.abs(point - source_point_2d) < 1.0e-6):
|
||||
@ -574,35 +570,35 @@ class LightSource(VMobject):
|
||||
hull.append(point_3d)
|
||||
index += 1
|
||||
|
||||
|
||||
hull_mobject = VMobject()
|
||||
hull_mobject.set_points_as_corners(hull)
|
||||
hull_mobject.apply_matrix(rotation_matrix)
|
||||
|
||||
|
||||
anchors = hull_mobject.get_anchors()
|
||||
|
||||
# add two control points for the outer cone
|
||||
if np.size(anchors) == 0:
|
||||
if np.size(anchors) == 0:
|
||||
self.shadow.points = []
|
||||
return
|
||||
|
||||
ray1 = anchors[source_index - 1] - projected_source
|
||||
ray1 = ray1/np.linalg.norm(ray1) * 100
|
||||
ray1 = ray1 / np.linalg.norm(ray1) * 100
|
||||
|
||||
ray2 = anchors[source_index] - projected_source
|
||||
ray2 = ray2/np.linalg.norm(ray2) * 100
|
||||
ray2 = ray2 / np.linalg.norm(ray2) * 100
|
||||
outpoint1 = anchors[source_index - 1] + ray1
|
||||
outpoint2 = anchors[source_index] + ray2
|
||||
|
||||
new_anchors = anchors[:source_index]
|
||||
new_anchors = np.append(new_anchors,np.array([outpoint1, outpoint2]),axis = 0)
|
||||
new_anchors = np.append(new_anchors,anchors[source_index:],axis = 0)
|
||||
new_anchors = np.append(new_anchors, np.array(
|
||||
[outpoint1, outpoint2]), axis=0)
|
||||
new_anchors = np.append(new_anchors, anchors[source_index:], axis=0)
|
||||
self.shadow.set_points_as_corners(new_anchors)
|
||||
|
||||
# shift it closer to the camera so it is in front of the spotlight
|
||||
self.shadow.mark_paths_closed = True
|
||||
|
||||
|
||||
class ScreenTracker(ContinualAnimation):
|
||||
def __init__(self, light_source, **kwargs):
|
||||
self.light_source = light_source
|
||||
@ -611,20 +607,3 @@ class ScreenTracker(ContinualAnimation):
|
||||
|
||||
def update_mobject(self, dt):
|
||||
self.light_source.update()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user