mirror of
https://github.com/3b1b/manim.git
synced 2025-07-31 22:13:30 +08:00
Delete no-longer used functions
This commit is contained in:
@ -1,32 +1,3 @@
|
||||
float cross2d(vec2 v, vec2 w){
|
||||
return v.x * w.y - w.x * v.y;
|
||||
}
|
||||
|
||||
|
||||
vec2 complex_div(vec2 v, vec2 w){
|
||||
return vec2(dot(v, w), cross2d(w, v)) / dot(w, w);
|
||||
}
|
||||
|
||||
|
||||
vec2 xs_on_clean_parabola(vec2 b0, vec2 b1, vec2 b2){
|
||||
/*
|
||||
Given three control points for a quadratic bezier,
|
||||
this returns the two values (x0, x2) such that the
|
||||
section of the parabola y = x^2 between those values
|
||||
is isometric to the given quadratic bezier.
|
||||
|
||||
Adapated from https://github.com/raphlinus/raphlinus.github.io/blob/master/_posts/2019-12-23-flatten-quadbez.md
|
||||
*/
|
||||
vec2 dd = normalize(2 * b1 - b0 - b2);
|
||||
|
||||
float u0 = dot(b1 - b0, dd);
|
||||
float u2 = dot(b2 - b1, dd);
|
||||
float cp = cross2d(b2 - b0, dd);
|
||||
|
||||
return vec2(u0 / cp, u2 / cp);
|
||||
}
|
||||
|
||||
|
||||
vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
|
||||
/*
|
||||
Given three control points for a quadratic bezier,
|
||||
@ -47,34 +18,6 @@ vec2 xs_on_clean_parabola(vec3 b0, vec3 b1, vec3 b2){
|
||||
}
|
||||
|
||||
|
||||
mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dst0, vec2 dst1){
|
||||
/*
|
||||
Returns an orthogonal matrix which will map
|
||||
src0 onto dst0 and src1 onto dst1.
|
||||
*/
|
||||
mat3 shift1 = mat3(
|
||||
1.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0,
|
||||
-src0.x, -src0.y, 1.0
|
||||
);
|
||||
mat3 shift2 = mat3(
|
||||
1.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0,
|
||||
dst0.x, dst0.y, 1.0
|
||||
);
|
||||
|
||||
// Compute complex division dest_vect / src_vect to determine rotation
|
||||
vec2 complex_rot = complex_div(dst1 - dst0, src1 - src0);
|
||||
mat3 rotate = mat3(
|
||||
complex_rot.x, complex_rot.y, 0.0,
|
||||
-complex_rot.y, complex_rot.x, 0.0,
|
||||
0.0, 0.0, 1.0
|
||||
);
|
||||
|
||||
return shift2 * rotate * shift1;
|
||||
}
|
||||
|
||||
|
||||
mat4 map_triangles(vec3 src0, vec3 src1, vec3 src2, vec3 dst0, vec3 dst1, vec3 dst2){
|
||||
/*
|
||||
Return an affine transform which maps the triangle (src0, src1, src2)
|
||||
@ -179,36 +122,3 @@ mat4 get_xyz_to_uv(vec3 b0, vec3 b1, vec3 b2, float temp_is_linear, out float is
|
||||
// return map_point_pairs(b0, b2, dst0, dst1);
|
||||
return map_triangles(b0, b1, b2, dst0, dst1, dst2);
|
||||
}
|
||||
|
||||
|
||||
mat3 get_xy_to_uv(vec2 b0, vec2 b1, vec2 b2, float temp_is_linear, out float is_linear){
|
||||
/*
|
||||
Returns a matrix for an affine transformation which maps a set of quadratic
|
||||
bezier controls points into a new coordinate system such that the bezier curve
|
||||
coincides with y = x^2, or in the case of a linear curve, it's mapped to the x-axis.
|
||||
*/
|
||||
vec2 dst0;
|
||||
vec2 dst1;
|
||||
is_linear = temp_is_linear;
|
||||
// Portions of the parabola y = x^2 where abs(x) exceeds
|
||||
// this value are treated as straight lines.
|
||||
float thresh = 2.0;
|
||||
if (!bool(is_linear)){
|
||||
vec2 xs = xs_on_clean_parabola(b0, b1, b2);
|
||||
float x0 = xs.x;
|
||||
float x2 = xs.y;
|
||||
if((x0 > thresh && x2 > thresh) || (x0 < -thresh && x2 < -thresh)){
|
||||
is_linear = 1.0;
|
||||
}else{
|
||||
dst0 = vec2(x0, x0 * x0);
|
||||
dst1 = vec2(x2, x2 * x2);
|
||||
}
|
||||
}
|
||||
// Check if is_linear status changed above
|
||||
if (bool(is_linear)){
|
||||
dst0 = vec2(0, 0);
|
||||
dst1 = vec2(1, 0);
|
||||
}
|
||||
|
||||
return map_point_pairs(b0, b2, dst0, dst1);
|
||||
}
|
||||
|
Reference in New Issue
Block a user