Cleaning up first pass implementation

This commit is contained in:
Grant Sanderson
2024-07-31 16:27:37 -04:00
parent 3ea8393e9a
commit c6a6503544
2 changed files with 53 additions and 33 deletions

View File

@ -13,6 +13,5 @@ void main() {
// sdf for the region around the curve we wish to color. // sdf for the region around the curve we wish to color.
float signed_dist_to_region = abs(signed_dist_to_curve) - 0.5 * uv_stroke_width; float signed_dist_to_region = abs(signed_dist_to_curve) - 0.5 * uv_stroke_width;
frag_color.a *= smoothstep(1.0, 0.0, signed_dist_to_region / uv_anti_alias_width); frag_color.a *= smoothstep(0.5, -0.5, signed_dist_to_region / uv_anti_alias_width);
frag_color.a += 0.2; // undo
} }

View File

@ -34,7 +34,6 @@ const int MAX_STEPS = 16;
vec3 unit_normal = vec3(0.0, 0.0, 1.0); vec3 unit_normal = vec3(0.0, 0.0, 1.0);
#INSERT emit_gl_Position.glsl #INSERT emit_gl_Position.glsl
#INSERT get_xyz_to_uv.glsl
#INSERT finalize_color.glsl #INSERT finalize_color.glsl
@ -52,6 +51,47 @@ vec4 normalized_joint_product(vec4 joint_product){
} }
vec3 point_on_curve(float t){
return verts[0] + 2 * (verts[1] - verts[0]) * t + (verts[0] - 2 * verts[1] + verts[2]) * t * t;
}
vec3 tangent_on_curve(float t){
return 2 * (verts[1] + -verts[0]) + 2 * (verts[0] - 2 * verts[1] + verts[2]) * t;
}
void map_to_basic(out float x0, out float x2, out float scale_factor){
/* Find the coordinates and scale factor such that the bezier curve
defined by verts[] is congruent to a section of the parabola y = x^2
between x0 and x2, with scale_factor
*/
}
void compute_subdivision(out int n_steps, out float subdivision[MAX_STEPS]){
/*
Based on https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
*/
float x0;
float x2;
float scale_factor;
map_to_basic(x0, x2, scale_factor);
if (normalized_joint_product(v_joint_product[1]).w > COS_THRESHOLD){
// Linear
n_steps = 2;
}else{
n_steps = MAX_STEPS; // TODO
}
for(int i = 0; i < MAX_STEPS; i++){
if (i >= n_steps) break;
subdivision[i] = float(i) / (n_steps - 1);
}
}
void create_joint( void create_joint(
vec4 joint_product, vec4 joint_product,
vec3 unit_tan, vec3 unit_tan,
@ -81,7 +121,8 @@ void create_joint(
changing_c1 = static_c1 + shift * unit_tan; changing_c1 = static_c1 + shift * unit_tan;
} }
vec3 get_perp(vec4 joint_product, vec3 point, vec3 tangent){
vec3 get_perp(vec3 point, vec3 tangent, vec4 joint_product){
/* /*
Perpendicular vectors to the left of the curve Perpendicular vectors to the left of the curve
*/ */
@ -101,16 +142,6 @@ vec3 get_perp(vec4 joint_product, vec3 point, vec3 tangent){
} }
vec3 point_on_curve(float t){
return verts[0] + 2 * (verts[1] - verts[0]) * t + (verts[0] - 2 * verts[1] + verts[2]) * t * t;
}
vec3 tangent_on_curve(float t){
return 2 * (verts[1] + -verts[0]) + 2 * (verts[0] - 2 * verts[1] + verts[2]) * t;
}
void emit_point_with_width( void emit_point_with_width(
vec3 point, vec3 point,
vec3 tangent, vec3 tangent,
@ -122,7 +153,7 @@ void emit_point_with_width(
vec3 unit_tan = normalize(tangent); vec3 unit_tan = normalize(tangent);
vec4 njp = normalized_joint_product(joint_product); vec4 njp = normalized_joint_product(joint_product);
float buff = 0.5 * width + aaw; float buff = 0.5 * width + aaw;
vec3 perp = buff * get_perp(njp, point, unit_tan); vec3 perp = buff * get_perp(point, unit_tan, njp);
vec3 corners[2] = vec3[2](point + perp, point - perp); vec3 corners[2] = vec3[2](point + perp, point - perp);
create_joint( create_joint(
@ -142,7 +173,6 @@ void emit_point_with_width(
emit_gl_Position(corners[i]); emit_gl_Position(corners[i]);
EmitVertex(); EmitVertex();
} }
} }
void main() { void main() {
@ -150,27 +180,18 @@ void main() {
// the first anchor is set equal to that anchor // the first anchor is set equal to that anchor
if (verts[0] == verts[1]) return; if (verts[0] == verts[1]) return;
vec4 jp1 = normalized_joint_product(v_joint_product[1]);
bool is_linear = jp1.w > COS_THRESHOLD; // TODO, something with this
// Compute subdivision // Compute subdivision
int n_steps; int n_steps;
if (is_linear){
n_steps = 2;
}else{
n_steps = MAX_STEPS; // TODO
}
float subdivision[MAX_STEPS]; float subdivision[MAX_STEPS];
vec3 points[MAX_STEPS]; compute_subdivision(n_steps, subdivision);
for(int i = 0; i < MAX_STEPS; i++){
if (i >= n_steps) break;
subdivision[i] = float(i) / (n_steps - 1);
points[i] = point_on_curve(subdivision[i]);
}
// Compute joint products // Compute joint products
vec3 points[MAX_STEPS];
vec4 joint_products[MAX_STEPS]; vec4 joint_products[MAX_STEPS];
for (int i = 0; i < MAX_STEPS; i++){
if (i >= n_steps) break;
points[i] = point_on_curve(subdivision[i]);
}
joint_products[0] = v_joint_product[0]; joint_products[0] = v_joint_product[0];
joint_products[0].xyz *= -1; joint_products[0].xyz *= -1;
joint_products[n_steps - 1] = v_joint_product[2]; joint_products[n_steps - 1] = v_joint_product[2];
@ -182,7 +203,7 @@ void main() {
joint_products[i].w = dot(v1, v2); joint_products[i].w = dot(v1, v2);
} }
// Intermediate points // Emit vertex pairs aroudn subdivided points
float scaled_aaw = anti_alias_width * pixel_size; float scaled_aaw = anti_alias_width * pixel_size;
for (int i = 0; i < MAX_STEPS; i++){ for (int i = 0; i < MAX_STEPS; i++){
if (i >= n_steps) break; if (i >= n_steps) break;
@ -190,7 +211,7 @@ void main() {
emit_point_with_width( emit_point_with_width(
points[i], points[i],
tangent_on_curve(t), tangent_on_curve(t),
joint_products[i], // TODO joint_products[i],
mix(v_stroke_width[0], v_stroke_width[2], t), mix(v_stroke_width[0], v_stroke_width[2], t),
mix(v_color[0], v_color[2], t), mix(v_color[0], v_color[2], t),
scaled_aaw scaled_aaw