Have stroke geometry shader pass to a coordinate system where the curve is some segment of y = x^2

This commit is contained in:
Grant Sanderson
2023-01-09 16:46:38 -08:00
parent d87db65344
commit c67ae08b62
3 changed files with 131 additions and 58 deletions

View File

@ -3,22 +3,77 @@ float cross2d(vec2 v, vec2 w){
}
mat3 get_xy_to_uv(vec2 b0, vec2 b1){
mat3 shift = mat3(
vec2 complex_div(vec2 v, vec2 w){
return vec2(dot(v, w), cross2d(w, v)) / dot(w, w);
}
vec2 xs_on_clean_parabola(vec2 controls[3]){
/*
Given three control points for a quadratic bezier,
this returns the two values (x0, x2) such that the
section of the parabola y = x^2 between those values
is isometric to the given quadratic bezier.
Adapated from https://github.com/raphlinus/raphlinus.github.io/blob/master/_posts/2019-12-23-flatten-quadbez.md
*/
vec2 b0 = controls[0];
vec2 b1 = controls[1];
vec2 b2 = controls[2];
vec2 dd = normalize(2 * b1 - b0 - b2);
float u0 = dot(b1 - b0, dd);
float u2 = dot(b2 - b1, dd);
float cp = cross2d(b2 - b0, dd);
return vec2(u0 / cp, u2 / cp);
}
mat3 map_point_pairs(vec2 src0, vec2 src1, vec2 dest0, vec2 dest1){
/*
Returns an orthogonal matrix which will map
src0 onto dest0 and src1 onto dest1.
*/
mat3 shift1 = mat3(
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
-b0.x, -b0.y, 1.0
-src0.x, -src0.y, 1.0
);
mat3 shift2 = mat3(
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
dest0.x, dest0.y, 1.0
);
float sf = length(b1 - b0);
vec2 I = (b1 - b0) / sf;
vec2 J = vec2(-I.y, I.x);
// Compute complex division dest_vect / src_vect to determine rotation
vec2 complex_rot = complex_div(dest1 - dest0, src1 - src0);
mat3 rotate = mat3(
I.x, J.x, 0.0,
I.y, J.y, 0.0,
complex_rot.x, complex_rot.y, 0.0,
-complex_rot.y, complex_rot.x, 0.0,
0.0, 0.0, 1.0
);
return (1.0 / sf) * rotate * shift;
return shift2 * rotate * shift1;
}
mat3 get_xy_to_uv(vec2 controls[3], float bezier_degree){
vec2[2] dest;
if (bezier_degree == 1.0){
dest[0] = vec2(0, 0);
dest[1] = vec2(1, 0);
}else{
vec2 xs = xs_on_clean_parabola(controls);
float x0 = xs.x;
float x2 = xs.y;
dest[0] = vec2(x0, x0 * x0);
dest[1] = vec2(x2, x2 * x2);
}
return map_point_pairs(
controls[0], controls[2], dest[0], dest[1]
);
}

View File

@ -3,44 +3,72 @@
#INSERT camera_uniform_declarations.glsl
in vec2 uv_coords;
in vec2 uv_b2;
in float uv_stroke_width;
in vec4 color;
in float uv_anti_alias_width;
in vec4 color;
in float has_prev;
in float has_next;
in float bezier_degree;
out vec4 frag_color;
#INSERT quadratic_bezier_distance.glsl
const float QUICK_DIST_WIDTH = 0.1;
float dist_to_curve(){
float dist = min_dist_to_curve(uv_coords, uv_b2, bezier_degree);
if(has_prev == 0 && uv_coords.x < 0){
float buff = 0.5 * uv_stroke_width - uv_anti_alias_width;
return max(-uv_coords.x + buff, dist);
float cube_root(float x){
return sign(x) * pow(abs(x), 1.0 / 3.0);
}
// Distance from (x0, y0) to the curve y = x^2
float dist_to_curve(float x0, float y0){
if(bezier_degree == 1.0){
return y0;
}
if(has_next == 0 && uv_coords.x > uv_b2.x){
float buff = 0.5 * uv_stroke_width - uv_anti_alias_width;
vec2 v12 = normalize(uv_b2 - vec2(1, 0));
float perp_dist = dot(uv_coords - uv_b2, v12);
if (perp_dist > 0) return max(perp_dist + buff, dist);
if(false && uv_stroke_width < QUICK_DIST_WIDTH){
// This is a quick approximation for computing
// the distance to the curve.
// Evaluate F(x, y) = y - x^2
// divide by its gradient's magnitude
return (y0 - x0 * x0) / sqrt(1 + 4 * x0 * x0);
}
return dist;
// Otherwise, explicit solve for the minmal distance using the cubic formula
//
// The distance squared between (x0, y0) and a point (x, x^2) looks like
//
// (x0 - x)^2 + (y0 - x^2)^2 = x^4 + (1 - 2y0)x^2 - 2x0 * x + (x0^2 + y0^2)
//
// Setting the derivative equal to zero (and rescaling) looks like
//
// x^3 + (0.5 - y0) * x - 0.5 * x0 = 0
//
// float p = 0.5 - y0;
// float mhq = 0.25 * x0; // negative half of q
// float sqrt_disc = sqrt(mhq * mhq + p * p * p / 27.0);
// float x = cube_root(mhq + sqrt_disc) + cube_root(mhq - sqrt_disc);
// return distance(uv_coords, vec2(x, x * x));
float x = x0;
float p = (0.5 - y0);
float q = -0.5 * x0;
for(int i = 0; i < 2; i++){
float fx = x * x * x + p * x + q;
float dfx = 3 * x * x + p;
x = x - fx / dfx;
}
return distance(uv_coords, vec2(x, x * x));
}
void main() {
if (uv_stroke_width == 0) discard;
float x0 = uv_coords.x;
float y0 = uv_coords.y;
// An sdf for the region around the curve we wish to color.
float signed_dist = abs(dist_to_curve()) - 0.5 * uv_stroke_width;
float signed_dist = abs(dist_to_curve(x0, y0)) - 0.5 * uv_stroke_width;
frag_color = color;
// if(uv_stroke_width > QUICK_DIST_WIDTH) frag_color = vec4(1, 0, 0, 1);
frag_color.a *= smoothstep(0.5, -0.5, signed_dist / uv_anti_alias_width);
}

View File

@ -31,12 +31,11 @@ out vec4 color;
out float uv_stroke_width;
out float uv_anti_alias_width;
out float has_prev;
out float has_next;
// out float has_prev;
// out float has_next;
out float bezier_degree;
out vec2 uv_coords;
out vec2 uv_b2;
// Codes for joint types
const float AUTO_JOINT = 0;
@ -103,17 +102,15 @@ int get_corners(
float aaw = anti_alias_width * frame_shape.y / pixel_shape.y;
float buff0 = 0.5 * stroke_widths[0] + aaw;
float buff2 = 0.5 * stroke_widths[2] + aaw;
float aaw0 = (1 - has_prev) * aaw;
float aaw2 = (1 - has_next) * aaw;
vec2 c0 = p0 - buff0 * p0_perp + aaw0 * v10;
vec2 c1 = p0 + buff0 * p0_perp + aaw0 * v10;
vec2 c2 = p2 + buff2 * p2_perp + aaw2 * v12;
vec2 c3 = p2 - buff2 * p2_perp + aaw2 * v12;
vec2 c0 = p0 - buff0 * p0_perp;
vec2 c1 = p0 + buff0 * p0_perp;
vec2 c2 = p2 + buff2 * p2_perp;
vec2 c3 = p2 - buff2 * p2_perp;
// Account for previous and next control points
if(has_prev > 0) create_joint(angle_from_prev, v01, buff0, c0, c0, c1, c1);
if(has_next > 0) create_joint(angle_to_next, v21, buff2, c3, c3, c2, c2);
create_joint(angle_from_prev, v01, buff0, c0, c0, c1, c1);
create_joint(angle_to_next, v21, buff2, c3, c3, c2, c2);
// Linear case is the simplest
if(degree == 1){
@ -137,10 +134,15 @@ void main() {
bezier_degree = (abs(v_joint_angle[1]) < ANGLE_THRESHOLD) ? 1.0 : 2.0;
vec3 unit_normal = camera_rotation * vec3(0.0, 0.0, 1.0); // TODO, track true unit normal globally
// Adjust stroke width based on distance from the camera
// Control points are projected to the xy plane before drawing, which in turn
// gets tranlated to a uv plane. The z-coordinate information will be remembered
// by what's sent out to gl_Position, and by how it affects the lighting and stroke width
vec2 flat_controls[3];
float scaled_strokes[3];
for(int i = 0; i < 3; i++){
float sf = perspective_scale_factor(verts[i].z, focal_distance);
flat_controls[i] = sf * verts[i].xy;
if(bool(flat_stroke)){
vec3 to_cam = normalize(vec3(0.0, 0.0, focal_distance) - verts[i]);
sf *= abs(dot(unit_normal, to_cam));
@ -148,15 +150,6 @@ void main() {
scaled_strokes[i] = v_stroke_width[i] * sf;
}
// Control points are projected to the xy plane before drawing, which in turn
// gets tranlated to a uv plane. The z-coordinate information will be remembered
// by what's sent out to gl_Position, and by how it affects the lighting and stroke width
vec2 flat_controls[3];
for(int i = 0; i < 3; i++){
float sf = perspective_scale_factor(verts[i].z, focal_distance);
flat_controls[i] = sf * verts[i].xy;
}
// If the curve is flat, put the middle control in the midpoint
if (bezier_degree == 1.0){
flat_controls[1] = 0.5 * (flat_controls[0] + flat_controls[2]);
@ -165,15 +158,13 @@ void main() {
// Set joint information
float angle_from_prev = v_joint_angle[0];
float angle_to_next = v_joint_angle[2];
has_prev = 1.0;
has_next = 1.0;
if(angle_from_prev == DISJOINT_CONST){
// TODO, mark the fact that there is no previous
angle_from_prev = 0.0;
has_prev = 0.0;
}
if(angle_to_next == DISJOINT_CONST){
// TODO, mark the fact that there is no next
angle_to_next = 0.0;
has_next = 0.0;
}
// Corners of a bounding region around curve
@ -187,16 +178,15 @@ void main() {
int index_map[5] = int[5](0, 0, 1, 2, 2);
if(n_corners == 4) index_map[2] = 2;
// Find uv conversion matrix
mat3 xy_to_uv = get_xy_to_uv(flat_controls[0], flat_controls[1]);
float scale_factor = length(flat_controls[1] - flat_controls[0]);
uv_anti_alias_width = anti_alias_width * frame_shape.y / pixel_shape.y / scale_factor;
uv_b2 = (xy_to_uv * vec3(flat_controls[2], 1.0)).xy;
// Find uv conversion
mat3 xy_to_uv = get_xy_to_uv(flat_controls, bezier_degree);
float scale_factor = length(xy_to_uv[0].xy);
uv_anti_alias_width = scale_factor * anti_alias_width * (frame_shape.y / pixel_shape.y);
// Emit each corner
for(int i = 0; i < n_corners; i++){
uv_coords = (xy_to_uv * vec3(corners[i], 1.0)).xy;
uv_stroke_width = scaled_strokes[index_map[i]] / scale_factor;
uv_stroke_width = scale_factor * scaled_strokes[index_map[i]];
// Apply some lighting to the color before sending out.
vec3 xyz_coords = vec3(corners[i], verts[index_map[i]].z);
color = finalize_color(