mirror of
https://github.com/3b1b/manim.git
synced 2025-07-29 13:03:31 +08:00
Begin incorporating div_curl vector field functionality into the main library
This commit is contained in:
@ -1,7 +1,6 @@
|
||||
|
||||
from big_ol_pile_of_manim_imports import *
|
||||
|
||||
DEFAULT_SCALAR_FIELD_COLORS = [BLUE_E, GREEN, YELLOW, RED]
|
||||
|
||||
# Quick note to anyone coming to this file with the
|
||||
# intent of recreating animations from the video. Some
|
||||
@ -24,22 +23,6 @@ RABBIT_COLOR = "#C6D6EF"
|
||||
|
||||
|
||||
# Helper functions
|
||||
def get_flow_start_points(x_min=-8, x_max=8,
|
||||
y_min=-5, y_max=5,
|
||||
delta_x=0.5, delta_y=0.5,
|
||||
n_repeats=1,
|
||||
noise_factor=None
|
||||
):
|
||||
if noise_factor is None:
|
||||
noise_factor = delta_y / 2
|
||||
return np.array([
|
||||
x * RIGHT + y * UP + noise_factor * np.random.random(3)
|
||||
for n in range(n_repeats)
|
||||
for x in np.arange(x_min, x_max + delta_x, delta_x)
|
||||
for y in np.arange(y_min, y_max + delta_y, delta_y)
|
||||
])
|
||||
|
||||
|
||||
def joukowsky_map(z):
|
||||
if z == 0:
|
||||
return 0
|
||||
@ -99,77 +82,6 @@ def cylinder_flow_magnitude_field(point):
|
||||
return get_norm(cylinder_flow_vector_field(point))
|
||||
|
||||
|
||||
def get_colored_background_image(scalar_field_func,
|
||||
number_to_rgb_func,
|
||||
pixel_height=DEFAULT_PIXEL_HEIGHT,
|
||||
pixel_width=DEFAULT_PIXEL_WIDTH,
|
||||
):
|
||||
ph = pixel_height
|
||||
pw = pixel_width
|
||||
fw = FRAME_WIDTH
|
||||
fh = FRAME_HEIGHT
|
||||
points_array = np.zeros((ph, pw, 3))
|
||||
x_array = np.linspace(-fw / 2, fw / 2, pw)
|
||||
x_array = x_array.reshape((1, len(x_array)))
|
||||
x_array = x_array.repeat(ph, axis=0)
|
||||
|
||||
y_array = np.linspace(fh / 2, -fh / 2, ph)
|
||||
y_array = y_array.reshape((len(y_array), 1))
|
||||
y_array.repeat(pw, axis=1)
|
||||
points_array[:, :, 0] = x_array
|
||||
points_array[:, :, 1] = y_array
|
||||
scalars = np.apply_along_axis(scalar_field_func, 2, points_array)
|
||||
rgb_array = number_to_rgb_func(scalars.flatten()).reshape((ph, pw, 3))
|
||||
return Image.fromarray((rgb_array * 255).astype('uint8'))
|
||||
|
||||
|
||||
def get_rgb_gradient_function(min_value=0, max_value=1,
|
||||
colors=[BLUE, RED],
|
||||
flip_alphas=True, # Why?
|
||||
):
|
||||
rgbs = np.array(list(map(color_to_rgb, colors)))
|
||||
|
||||
def func(values):
|
||||
alphas = inverse_interpolate(min_value, max_value, values)
|
||||
alphas = np.clip(alphas, 0, 1)
|
||||
# if flip_alphas:
|
||||
# alphas = 1 - alphas
|
||||
scaled_alphas = alphas * (len(rgbs) - 1)
|
||||
indices = scaled_alphas.astype(int)
|
||||
next_indices = np.clip(indices + 1, 0, len(rgbs) - 1)
|
||||
inter_alphas = scaled_alphas % 1
|
||||
inter_alphas = inter_alphas.repeat(3).reshape((len(indices), 3))
|
||||
result = interpolate(rgbs[indices], rgbs[next_indices], inter_alphas)
|
||||
return result
|
||||
|
||||
return func
|
||||
|
||||
|
||||
def get_color_field_image_file(scalar_func,
|
||||
min_value=0, max_value=2,
|
||||
colors=DEFAULT_SCALAR_FIELD_COLORS
|
||||
):
|
||||
# try_hash
|
||||
np.random.seed(0)
|
||||
sample_inputs = 5 * np.random.random(size=(10, 3)) - 10
|
||||
sample_outputs = np.apply_along_axis(scalar_func, 1, sample_inputs)
|
||||
func_hash = hash(
|
||||
str(min_value) + str(max_value) + str(colors) + str(sample_outputs)
|
||||
)
|
||||
file_name = "%d.png" % func_hash
|
||||
full_path = os.path.join(RASTER_IMAGE_DIR, file_name)
|
||||
if not os.path.exists(full_path):
|
||||
print("Rendering color field image " + str(func_hash))
|
||||
rgb_gradient_func = get_rgb_gradient_function(
|
||||
min_value=min_value,
|
||||
max_value=max_value,
|
||||
colors=colors
|
||||
)
|
||||
image = get_colored_background_image(scalar_func, rgb_gradient_func)
|
||||
image.save(full_path)
|
||||
return full_path
|
||||
|
||||
|
||||
def vec_tex(s):
|
||||
return "\\vec{\\textbf{%s}}" % s
|
||||
|
||||
@ -244,204 +156,6 @@ def preditor_prey_vector_field(point):
|
||||
|
||||
# Mobjects
|
||||
|
||||
|
||||
class StreamLines(VGroup):
|
||||
CONFIG = {
|
||||
"start_points_generator": get_flow_start_points,
|
||||
"start_points_generator_config": {},
|
||||
"dt": 0.05,
|
||||
"virtual_time": 3,
|
||||
"n_anchors_per_line": 100,
|
||||
"stroke_width": 1,
|
||||
"stroke_color": WHITE,
|
||||
"color_lines_by_magnitude": True,
|
||||
"min_magnitude": 0.5,
|
||||
"max_magnitude": 1.5,
|
||||
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
||||
"cutoff_norm": 15,
|
||||
}
|
||||
|
||||
def __init__(self, func, **kwargs):
|
||||
VGroup.__init__(self, **kwargs)
|
||||
self.func = func
|
||||
dt = self.dt
|
||||
|
||||
start_points = self.start_points_generator(
|
||||
**self.start_points_generator_config
|
||||
)
|
||||
for point in start_points:
|
||||
points = [point]
|
||||
for t in np.arange(0, self.virtual_time, dt):
|
||||
last_point = points[-1]
|
||||
points.append(last_point + dt * func(last_point))
|
||||
if get_norm(last_point) > self.cutoff_norm:
|
||||
break
|
||||
line = VMobject()
|
||||
step = max(1, int(len(points) / self.n_anchors_per_line))
|
||||
line.set_points_smoothly(points[::step])
|
||||
self.add(line)
|
||||
|
||||
self.set_stroke(self.stroke_color, self.stroke_width)
|
||||
|
||||
if self.color_lines_by_magnitude:
|
||||
image_file = get_color_field_image_file(
|
||||
lambda p: get_norm(func(p)),
|
||||
min_value=self.min_magnitude,
|
||||
max_value=self.max_magnitude,
|
||||
colors=self.colors,
|
||||
)
|
||||
self.color_using_background_image(image_file)
|
||||
|
||||
|
||||
class VectorField(VGroup):
|
||||
CONFIG = {
|
||||
"delta_x": 0.5,
|
||||
"delta_y": 0.5,
|
||||
"x_min": int(np.floor(-FRAME_WIDTH / 2)),
|
||||
"x_max": int(np.ceil(FRAME_WIDTH / 2)),
|
||||
"y_min": int(np.floor(-FRAME_HEIGHT / 2)),
|
||||
"y_max": int(np.ceil(FRAME_HEIGHT / 2)),
|
||||
"min_magnitude": 0,
|
||||
"max_magnitude": 2,
|
||||
"colors": DEFAULT_SCALAR_FIELD_COLORS,
|
||||
# Takes in actual norm, spits out displayed norm
|
||||
"length_func": lambda norm: 0.5 * sigmoid(norm),
|
||||
"stroke_color": BLACK,
|
||||
"stroke_width": 0.5,
|
||||
"fill_opacity": 1.0,
|
||||
"vector_config": {},
|
||||
}
|
||||
|
||||
def __init__(self, func, **kwargs):
|
||||
VGroup.__init__(self, **kwargs)
|
||||
self.func = func
|
||||
self.rgb_gradient_function = get_rgb_gradient_function(
|
||||
self.min_magnitude,
|
||||
self.max_magnitude,
|
||||
self.colors,
|
||||
flip_alphas=False
|
||||
)
|
||||
for x in np.arange(self.x_min, self.x_max, self.delta_x):
|
||||
for y in np.arange(self.y_min, self.y_max, self.delta_y):
|
||||
point = x * RIGHT + y * UP
|
||||
self.add(self.get_vector(point))
|
||||
|
||||
def get_vector(self, point, **kwargs):
|
||||
output = np.array(self.func(point))
|
||||
norm = get_norm(output)
|
||||
if norm == 0:
|
||||
output *= 0
|
||||
else:
|
||||
output *= self.length_func(norm) / norm
|
||||
vector_config = dict(self.vector_config)
|
||||
vector_config.update(kwargs)
|
||||
vect = Vector(output, **vector_config)
|
||||
vect.shift(point)
|
||||
fill_color = rgb_to_color(
|
||||
self.rgb_gradient_function(np.array([norm]))[0]
|
||||
)
|
||||
vect.set_color(fill_color)
|
||||
vect.set_fill(opacity=self.fill_opacity)
|
||||
vect.set_stroke(
|
||||
self.stroke_color,
|
||||
self.stroke_width
|
||||
)
|
||||
return vect
|
||||
|
||||
|
||||
# Redefining what was once a ContinualAnimation class
|
||||
# as a function
|
||||
def VectorFieldFlow(mobject, func):
|
||||
mobject.add_updater(
|
||||
lambda m, dt: m.shift(
|
||||
func(m.get_center()) * dt
|
||||
)
|
||||
)
|
||||
return mobject
|
||||
|
||||
|
||||
# Redefining what was once a ContinualAnimation class
|
||||
# as a function
|
||||
def VectorFieldSubmobjectFlow(mobject, func):
|
||||
def apply_nudge(mob, dt):
|
||||
for submob in mob:
|
||||
x, y = submob.get_center()[:2]
|
||||
if abs(x) < FRAME_WIDTH and abs(y) < FRAME_HEIGHT:
|
||||
submob.shift(func(submob.get_center()) * dt)
|
||||
|
||||
mobject.add_updater(apply_nudge)
|
||||
return mobject
|
||||
|
||||
|
||||
# Redefining what was once a ContinualAnimation class
|
||||
# as a function
|
||||
def VectorFieldPointFlow(mobject, func):
|
||||
def apply_nudge(self, dt):
|
||||
self.mobject.apply_function(
|
||||
lambda p: p + func(p) * dt
|
||||
)
|
||||
mobject.add_updater(apply_nudge)
|
||||
return mobject
|
||||
|
||||
|
||||
# TODO: Make it so that you can have a group of stream_lines
|
||||
# varying in response to a changing vector field, and still
|
||||
# animate the resulting flow
|
||||
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
|
||||
CONFIG = {
|
||||
"n_segments": 10,
|
||||
"time_width": 0.1,
|
||||
"remover": True
|
||||
}
|
||||
|
||||
def __init__(self, vmobject, **kwargs):
|
||||
digest_config(self, kwargs)
|
||||
max_stroke_width = vmobject.get_stroke_width()
|
||||
max_time_width = kwargs.pop("time_width", self.time_width)
|
||||
AnimationGroup.__init__(self, *[
|
||||
ShowPassingFlash(
|
||||
vmobject.deepcopy().set_stroke(width=stroke_width),
|
||||
time_width=time_width,
|
||||
**kwargs
|
||||
)
|
||||
for stroke_width, time_width in zip(
|
||||
np.linspace(0, max_stroke_width, self.n_segments),
|
||||
np.linspace(max_time_width, 0, self.n_segments)
|
||||
)
|
||||
])
|
||||
|
||||
|
||||
# TODO, this is untested after turning it from a
|
||||
# ContinualAnimation into a VGroup
|
||||
class AnimatedStreamLines(VGroup):
|
||||
CONFIG = {
|
||||
"lag_range": 4,
|
||||
"line_anim_class": ShowPassingFlash,
|
||||
"line_anim_config": {
|
||||
"run_time": 4,
|
||||
"rate_func": linear,
|
||||
"time_width": 0.3,
|
||||
},
|
||||
}
|
||||
|
||||
def __init__(self, stream_lines, **kwargs):
|
||||
VGroup.__init__(self, **kwargs)
|
||||
self.stream_lines = stream_lines
|
||||
for line in stream_lines:
|
||||
line.anim = self.line_anim_class(line, **self.line_anim_config)
|
||||
line.time = -self.lag_range * random.random()
|
||||
self.add(line.anim.mobject)
|
||||
|
||||
self.add_updater(lambda m, dt: m.update(dt))
|
||||
|
||||
def update(self, dt):
|
||||
stream_lines = self.stream_lines
|
||||
for line in stream_lines:
|
||||
line.time += dt
|
||||
adjusted_time = max(line.time, 0) % line.anim.run_time
|
||||
line.anim.update(adjusted_time / line.anim.run_time)
|
||||
|
||||
|
||||
# TODO, this is untested after turning it from a
|
||||
# ContinualAnimation into a VGroup
|
||||
class JigglingSubmobjects(VGroup):
|
||||
@ -3066,7 +2780,7 @@ class ShowTwoPopulations(Scene):
|
||||
self.start_num_rabbits * RIGHT +
|
||||
self.start_num_foxes * UP
|
||||
)
|
||||
self.add(VectorFieldFlow(
|
||||
self.add(move_along_vector_field(
|
||||
phase_point,
|
||||
preditor_prey_vector_field,
|
||||
))
|
||||
@ -3420,7 +3134,7 @@ class PhaseSpaceOfPopulationModel(ShowTwoPopulations, PiCreatureScene, MovingCam
|
||||
dot_vector = new_dot_vector
|
||||
self.play(dot.move_to, dot_vector.get_end())
|
||||
|
||||
dot_movement = VectorFieldFlow(
|
||||
dot_movement = move_along_vector_field(
|
||||
dot, lambda p: 0.3 * vector_field.func(p)
|
||||
)
|
||||
self.add(dot_movement)
|
||||
|
Reference in New Issue
Block a user