div_curl project up to ChangingElectricField

This commit is contained in:
Grant Sanderson
2018-06-08 17:16:11 -07:00
parent 817f480d84
commit 80dd37f763
2 changed files with 400 additions and 41 deletions

View File

@ -1,8 +1,18 @@
from big_ol_pile_of_manim_imports import *
DEFAULT_SCALAR_FIELD_COLORS = [BLUE_E, WHITE, RED]
# Quick note to anyone coming to this file with the
# intent of recreating animations from the video. Some
# of these, espeically those involving StreamLineAnimation,
# can take an extremely long time to run, but much of the
# computational cost is just for giving subtle little effects
# which don't matter too much. Switching the line_anim_class
# to ShowPassingFlash will give significant speedups, as will
# increasing the values of delta_x and delta_y in sampling for
# the streamlines. Certainly while developing, things were not
# run at production quality.
# Helper functions
def get_flow_start_points(x_min=-8, x_max=8,
@ -109,12 +119,68 @@ def get_color_field_image_file(scalar_func,
image.save(full_path)
return full_path
def vec_tex(s):
return "\\vec{\\textbf{%s}}" % s
def four_swirls_function(point):
x, y = point[:2]
result = (y**3 - 4 * y) * RIGHT + (x**3 - 16 * x) * UP
result *= 0.05
norm = np.linalg.norm(result)
if norm == 0:
return result
# result *= 2 * sigmoid(norm) / norm
return result
def get_force_field_func(*point_strength_pairs):
def func(point):
result = np.array(ORIGIN)
for center, strength in point_strength_pairs:
to_center = center - point
norm = np.linalg.norm(to_center)
if norm == 0:
continue
to_center /= norm**3
to_center *= strength
result += to_center
return result
return func
def get_chraged_particle(color, sign, radius=0.1):
result = Circle(
stroke_color=WHITE,
stroke_width=0.5,
fill_color=color,
fill_opacity=0.8,
radius=radius
)
sign = TexMobject(sign)
sign.set_stroke(WHITE, 1)
sign.scale_to_fit_width(0.5 * result.get_width())
sign.move_to(result)
result.add(sign)
return result
def get_proton(radius=0.1):
return get_chraged_particle(RED, "+", radius)
def get_electron(radius=0.05):
return get_chraged_particle(BLUE, "-", radius)
# Mobjects
class StreamLines(VGroup):
CONFIG = {
"start_points_generator": get_flow_start_points,
"start_points_generator_config": {},
"dt": 0.05,
"virtual_time": 15,
"n_anchors_per_line": 40,
@ -124,6 +190,7 @@ class StreamLines(VGroup):
"min_magnitude": 0.5,
"max_magnitude": 1.5,
"colors": DEFAULT_SCALAR_FIELD_COLORS,
"cutoff_norm": 15,
}
def __init__(self, func, **kwargs):
@ -131,16 +198,19 @@ class StreamLines(VGroup):
self.func = func
dt = self.dt
start_points = self.start_points_generator()
start_points = self.start_points_generator(
**self.start_points_generator_config
)
for point in start_points:
points = [point]
for t in np.arange(0, self.virtual_time, dt):
last_point = points[-1]
points.append(last_point + dt * func(last_point))
if np.linalg.norm(last_point) > self.cutoff_norm:
break
line = VMobject()
line.set_points_smoothly(
points[::(len(points) / self.n_anchors_per_line)]
)
step = max(1, len(points) / self.n_anchors_per_line)
line.set_points_smoothly(points[::step])
self.add(line)
self.set_stroke(self.stroke_color, self.stroke_width)
@ -174,9 +244,12 @@ class VectorField(VGroup):
def __init__(self, func, **kwargs):
VGroup.__init__(self, **kwargs)
self.func = func
rgb_gradient_function = get_rgb_gradient_function(
self.min_magnitude, self.max_magnitude, self.colors,
self.min_magnitude,
self.max_magnitude,
self.colors,
flip_alphas=False
)
for x in np.arange(self.x_min, self.x_max, self.delta_x):
@ -188,6 +261,7 @@ class VectorField(VGroup):
output *= 0
else:
output *= self.length_func(norm) / norm
# new_norm = np.linalg.norm(output)
vect = Vector(output)
vect.shift(point)
vect.set_fill(rgb_to_color(
@ -234,6 +308,9 @@ class VectorFieldPointFlow(VectorFieldFlow):
)
# TODO: Make it so that you can have a group of streamlines
# varying in response to a changing vector field, and still
# animate the resulting flow
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
CONFIG = {
"n_segments": 10,
@ -564,13 +641,16 @@ class Introduction(Scene):
delta_y = 0.1
return StreamLines(
func,
start_points_generator=lambda: get_flow_start_points(
x_min=-8, x_max=-7, y_min=-4, y_max=4,
delta_x=delta_x,
delta_y=delta_y,
n_repeats=1,
noise_factor=0.1,
),
start_points_generator_config={
"x_min": -8,
"x_max": -7,
"y_min": -4,
"y_max": 4,
"delta_x": delta_x,
"delta_y": delta_y,
"n_repeats": 1,
"noise_factor": 0.1,
},
stroke_width=2,
)
@ -619,7 +699,7 @@ class ElectricField(Introduction, MovingCameraScene):
)
protons, electrons = groups = [
VGroup(*[method(radius=0.2) for x in range(20)])
for method in self.get_proton, self.get_electron
for method in get_proton, get_electron
]
for group in groups:
group.arrange_submobjects(RIGHT, buff=MED_SMALL_BUFF)
@ -648,7 +728,7 @@ class ElectricField(Introduction, MovingCameraScene):
unit_circle = self.unit_circle
protons = VGroup(*[
self.get_proton().move_to(
get_proton().move_to(
rotate_vector(0.275 * n * RIGHT, angle)
)
for n in range(4)
@ -658,7 +738,7 @@ class ElectricField(Introduction, MovingCameraScene):
])
jiggling_protons = JigglingSubmobjects(protons)
electrons = VGroup(*[
self.get_electron().move_to(
get_electron().move_to(
proton.get_center() +
proton.radius * rotate_vector(RIGHT, angle)
)
@ -735,32 +815,25 @@ class ElectricField(Introduction, MovingCameraScene):
rate_func=there_and_back,
))
# Helpers
def get_chraged_particle(self, color, sign, radius=0.1):
result = Circle(
stroke_color=WHITE,
stroke_width=0.5,
fill_color=color,
fill_opacity=0.8,
radius=radius
)
sign = TexMobject(sign)
sign.set_stroke(WHITE, 1)
sign.scale_to_fit_width(0.5 * result.get_width())
sign.move_to(result)
result.add(sign)
return result
def get_proton(self, radius=0.1):
return self.get_chraged_particle(RED, "+", radius)
def get_electron(self, radius=0.05):
return self.get_chraged_particle(BLUE, "-", radius)
class AskQuestions(TeacherStudentsScene):
def construct(self):
div_tex = TexMobject("\\nabla \\cdot", vec_tex("v"))
curl_tex = TexMobject("\\nabla \\times", vec_tex("v"))
div_name = TextMobject("Divergence")
curl_name = TextMobject("Curl")
div = VGroup(div_name, div_tex)
curl = VGroup(curl_name, curl_tex)
for group in div, curl:
group[1].set_color_by_tex(vec_tex("v"), YELLOW)
group.arrange_submobjects(DOWN)
topics = VGroup(div, curl)
topics.arrange_submobjects(DOWN, buff=LARGE_BUFF)
topics.move_to(self.hold_up_spot, DOWN)
div.save_state()
div.move_to(self.hold_up_spot, DOWN)
screen = self.screen
self.student_says(
"What does fluid flow have \\\\ to do with electricity?",
added_anims=[self.teacher.change, "happy"]
@ -770,4 +843,290 @@ class AskQuestions(TeacherStudentsScene):
"And you mentioned \\\\ complex numbers?",
student_index=0,
)
self.wait(3)
self.play(
FadeInFromDown(div),
self.teacher.change, "raise_right_hand",
FadeOut(self.students[0].bubble),
FadeOut(self.students[0].bubble.content),
self.get_student_changes(*["pondering"] * 3)
)
self.play(
FadeInFromDown(curl),
div.restore
)
self.wait()
self.look_at(self.screen)
self.wait()
self.change_all_student_modes("hooray", look_at_arg=screen)
self.wait(3)
topics.generate_target()
topics.target.to_edge(LEFT, buff=LARGE_BUFF)
arrow = TexMobject("\\leftrightarrow")
arrow.scale(2)
arrow.next_to(topics.target, RIGHT, buff=LARGE_BUFF)
screen.next_to(arrow, RIGHT, LARGE_BUFF)
complex_analysis = TextMobject("Complex analysis")
complex_analysis.next_to(screen, UP)
self.play(
MoveToTarget(topics),
self.get_student_changes(
"confused", "sassy", "erm",
look_at_arg=topics.target
),
self.teacher.change, "pondering", screen
)
self.play(
Write(arrow),
FadeInFromDown(complex_analysis)
)
self.look_at(screen)
self.wait(6)
class IntroduceVectorField(Scene):
CONFIG = {
"vector_field_config": {
# "delta_x": 2,
# "delta_y": 2,
"delta_x": 0.5,
"delta_y": 0.5,
},
"stream_line_config": {
"start_points_generator_config": {
# "delta_x": 1,
# "delta_y": 1,
"delta_x": 0.25,
"delta_y": 0.25,
},
"virtual_time": 3,
},
"stream_line_animation_config": {
# "line_anim_class": ShowPassingFlash,
"line_anim_class": ShowPassingFlashWithThinningStrokeWidth,
}
}
def construct(self):
self.add_plane()
self.add_title()
self.points_to_vectors()
self.show_fluid_flow()
self.show_gravitational_force()
self.show_magnetic_force()
self.show_fluid_flow()
def add_plane(self):
plane = self.plane = NumberPlane()
plane.add_coordinates()
plane.remove(plane.coordinate_labels[-1])
self.add(plane)
def add_title(self):
title = TextMobject("Vector field")
title.scale(1.5)
title.to_edge(UP, buff=MED_SMALL_BUFF)
title.add_background_rectangle(opacity=1, buff=SMALL_BUFF)
self.add_foreground_mobjects(title)
def points_to_vectors(self):
vector_field = self.vector_field = VectorField(
four_swirls_function,
**self.vector_field_config
)
dots = VGroup()
for vector in vector_field:
dot = Dot(radius=0.05)
dot.move_to(vector.get_start())
dot.target = vector
dots.add(dot)
self.play(LaggedStart(GrowFromCenter, dots))
self.wait()
self.play(LaggedStart(MoveToTarget, dots, remover=True))
self.add(vector_field)
self.wait()
def show_fluid_flow(self):
vector_field = self.vector_field
stream_lines = StreamLines(
vector_field.func,
**self.stream_line_config
)
stream_line_animation = StreamLineAnimation(
stream_lines,
**self.stream_line_animation_config
)
self.add(stream_line_animation)
self.play(
vector_field.set_fill, {"opacity": 0.3}
)
self.wait(7)
self.play(
vector_field.set_fill, {"opacity": 1},
VFadeOut(stream_line_animation.mobject),
)
self.remove(stream_line_animation)
def show_gravitational_force(self):
earth = self.earth = ImageMobject("earth")
moon = self.moon = ImageMobject("moon", height=1)
earth_center = 3 * RIGHT + 2 * UP
moon_center = 3 * LEFT + DOWN
earth.move_to(earth_center)
moon.move_to(moon_center)
gravity_func = get_force_field_func((earth_center, 6), (moon_center, 1))
gravity_field = VectorField(
gravity_func,
**self.vector_field_config
)
self.add_foreground_mobjects(earth, moon)
self.play(
GrowFromCenter(earth),
GrowFromCenter(moon),
Transform(self.vector_field, gravity_field),
run_time=2
)
self.vector_field.func = gravity_field.func
self.wait()
def show_magnetic_force(self):
magnetic_func = get_force_field_func(
(3 * LEFT, 1), (3 * RIGHT, - 1)
)
magnetic_field = VectorField(
magnetic_func,
**self.vector_field_config
)
magnet = VGroup(*[
Rectangle(
width=3.5,
height=1,
stroke_width=0,
fill_opacity=1,
fill_color=color
)
for color in BLUE, RED
])
magnet.arrange_submobjects(RIGHT, buff=0)
for char, vect in ("S", LEFT), ("N", RIGHT):
letter = TextMobject(char)
edge = magnet.get_edge_center(vect)
letter.next_to(edge, -vect, buff=MED_LARGE_BUFF)
magnet.add(letter)
self.add_foreground_mobjects(magnet)
self.play(
self.earth.scale, 0,
self.moon.scale, 0,
DrawBorderThenFill(magnet),
Transform(self.vector_field, magnetic_field),
run_time=2
)
self.vector_field.func = magnetic_field.func
self.remove_foreground_mobjects(self.earth, self.moon)
class QuickNoteOnDrawingThese(TeacherStudentsScene):
def construct(self):
self.teacher_says(
"Quick note on \\\\ drawing vector fields",
bubble_kwargs={"width": 5, "height": 3},
added_anims=[self.get_student_changes(
"confused", "erm", "sassy"
)]
)
self.look_at(self.screen)
self.wait(3)
class ShorteningLongVectors(IntroduceVectorField):
def construct(self):
self.add_plane()
self.add_title()
self.contrast_adjusted_and_non_adjusted()
def contrast_adjusted_and_non_adjusted(self):
func = four_swirls_function
unadjusted = VectorField(
func, length_func=lambda n: n, colors=[WHITE],
)
adjusted = VectorField(func)
for v1, v2 in zip(adjusted, unadjusted):
v1.save_state()
v1.target = v2
self.add(adjusted)
self.wait()
self.play(LaggedStart(
MoveToTarget, adjusted,
run_time=3
))
self.wait()
self.play(LaggedStart(
ApplyMethod, adjusted,
lambda m: (m.restore,),
run_time=3
))
self.wait()
class TimeDependentVectorField(ExternallyAnimatedScene):
pass
class ChangingElectricField(Scene):
CONFIG = {
"vector_field_config": {}
}
def construct(self):
particles = self.particles = VGroup()
for n in range(9):
if n % 2 == 0:
particle = get_proton(radius=0.2)
particle.charge = +1
else:
particle = get_electron(radius=0.2)
particle.charge = -1
particle.velocity = np.array(ORIGIN)
particles.add(particle)
particle.shift(
0.2 * random.random() * RIGHT +
0.2 * random.random() * UP
)
particles.arrange_submobjects_in_grid(buff=LARGE_BUFF)
vector_field = self.get_vector_field()
def update_vector_field(vector_field):
new_field = self.get_vector_field()
Transform(vector_field, new_field).update(1)
vector_field.func = new_field.func
def update_particles(particles, dt):
func = vector_field.func
for particle in particles:
force = func(particle.get_center())
particle.velocity += force * dt
particle.shift(particle.velocity * dt)
self.add(
ContinualUpdateFromFunc(vector_field, update_vector_field),
ContinualUpdateFromTimeFunc(particles, update_particles),
)
self.wait(20)
def get_vector_field(self):
func = get_force_field_func(*zip(
map(Mobject.get_center, self.particles),
[p.charge for p in self.particles]
))
return VectorField(func, **self.vector_field_config)