mirror of
https://github.com/3b1b/manim.git
synced 2025-07-31 22:13:30 +08:00
Random fixes to old_projects
This commit is contained in:
@ -2351,6 +2351,7 @@ class TransitionFromPathsToBoundariesArrowless(TransitionFromPathsToBoundaries):
|
|||||||
|
|
||||||
class BreakDownLoopWithNonzeroWinding(TransitionFromPathsToBoundaries):
|
class BreakDownLoopWithNonzeroWinding(TransitionFromPathsToBoundaries):
|
||||||
def construct(self):
|
def construct(self):
|
||||||
|
TransitionFromPathsToBoundaries.construct(self)
|
||||||
zero_point = 2*LEFT
|
zero_point = 2*LEFT
|
||||||
|
|
||||||
squares, joint_rect = self.get_squares_and_joint_rect()
|
squares, joint_rect = self.get_squares_and_joint_rect()
|
||||||
|
@ -337,7 +337,7 @@ class LeviSolution(CycloidScene):
|
|||||||
new_theta.next_to(new_arc, LEFT)
|
new_theta.next_to(new_arc, LEFT)
|
||||||
new_theta.shift(0.1*DOWN)
|
new_theta.shift(0.1*DOWN)
|
||||||
kwargs = {
|
kwargs = {
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS,
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH,
|
||||||
}
|
}
|
||||||
triangle1 = Polygon(
|
triangle1 = Polygon(
|
||||||
self.p_point, self.c_point, self.bottom_point,
|
self.p_point, self.c_point, self.bottom_point,
|
||||||
|
@ -9,7 +9,7 @@ from big_ol_pile_of_manim_imports import *
|
|||||||
from functools import reduce
|
from functools import reduce
|
||||||
|
|
||||||
DEFAULT_PLANE_CONFIG = {
|
DEFAULT_PLANE_CONFIG = {
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@ import sys
|
|||||||
|
|
||||||
from big_ol_pile_of_manim_imports import *
|
from big_ol_pile_of_manim_imports import *
|
||||||
|
|
||||||
ARROW_CONFIG = {"stroke_width" : 2*DEFAULT_POINT_THICKNESS}
|
ARROW_CONFIG = {"stroke_width" : 2*DEFAULT_STROKE_WIDTH}
|
||||||
LIGHT_RED = RED_E
|
LIGHT_RED = RED_E
|
||||||
|
|
||||||
def matrix_to_string(matrix):
|
def matrix_to_string(matrix):
|
||||||
@ -52,7 +52,7 @@ class ShowMultiplication(NumberLineScene):
|
|||||||
def construct(self, num, show_original_line):
|
def construct(self, num, show_original_line):
|
||||||
config = {
|
config = {
|
||||||
"density" : max(abs(num), 1)*DEFAULT_POINT_DENSITY_1D,
|
"density" : max(abs(num), 1)*DEFAULT_POINT_DENSITY_1D,
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH
|
||||||
}
|
}
|
||||||
if abs(num) < 1:
|
if abs(num) < 1:
|
||||||
config["numerical_radius"] = FRAME_X_RADIUS/num
|
config["numerical_radius"] = FRAME_X_RADIUS/num
|
||||||
@ -115,7 +115,7 @@ class ExamplesOfNonlinearOneDimensionalTransforms(NumberLineScene):
|
|||||||
self.clear()
|
self.clear()
|
||||||
self.add(self.nonlinear)
|
self.add(self.nonlinear)
|
||||||
config = {
|
config = {
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS,
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH,
|
||||||
"density" : 5*DEFAULT_POINT_DENSITY_1D,
|
"density" : 5*DEFAULT_POINT_DENSITY_1D,
|
||||||
}
|
}
|
||||||
NumberLineScene.construct(self, **config)
|
NumberLineScene.construct(self, **config)
|
||||||
@ -144,7 +144,7 @@ class ShowTwoThenThree(ShowMultiplication):
|
|||||||
|
|
||||||
def construct(self):
|
def construct(self):
|
||||||
config = {
|
config = {
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS,
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH,
|
||||||
"density" : 6*DEFAULT_POINT_DENSITY_1D,
|
"density" : 6*DEFAULT_POINT_DENSITY_1D,
|
||||||
}
|
}
|
||||||
NumberLineScene.construct(self, **config)
|
NumberLineScene.construct(self, **config)
|
||||||
@ -163,7 +163,7 @@ class TransformScene2D(Scene):
|
|||||||
"x_radius" : FRAME_WIDTH,
|
"x_radius" : FRAME_WIDTH,
|
||||||
"y_radius" : FRAME_WIDTH,
|
"y_radius" : FRAME_WIDTH,
|
||||||
"density" : DEFAULT_POINT_DENSITY_1D*density_factor,
|
"density" : DEFAULT_POINT_DENSITY_1D*density_factor,
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH
|
||||||
}
|
}
|
||||||
if not use_faded_lines:
|
if not use_faded_lines:
|
||||||
config["x_faded_line_frequency"] = None
|
config["x_faded_line_frequency"] = None
|
||||||
@ -323,7 +323,7 @@ class ExamplesOfNonlinearTwoDimensionalTransformations(Scene):
|
|||||||
"x_radius" : FRAME_WIDTH,
|
"x_radius" : FRAME_WIDTH,
|
||||||
"y_radius" : FRAME_WIDTH,
|
"y_radius" : FRAME_WIDTH,
|
||||||
"density" : 3*DEFAULT_POINT_DENSITY_1D,
|
"density" : 3*DEFAULT_POINT_DENSITY_1D,
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH
|
||||||
}
|
}
|
||||||
number_plane = NumberPlane(**config)
|
number_plane = NumberPlane(**config)
|
||||||
numbers = number_plane.get_coordinate_labels()
|
numbers = number_plane.get_coordinate_labels()
|
||||||
@ -377,7 +377,7 @@ class TrickyExamplesOfNonlinearTwoDimensionalTransformations(Scene):
|
|||||||
"x_radius" : 0.6*FRAME_WIDTH,
|
"x_radius" : 0.6*FRAME_WIDTH,
|
||||||
"y_radius" : 0.6*FRAME_WIDTH,
|
"y_radius" : 0.6*FRAME_WIDTH,
|
||||||
"density" : 10*DEFAULT_POINT_DENSITY_1D,
|
"density" : 10*DEFAULT_POINT_DENSITY_1D,
|
||||||
"stroke_width" : 2*DEFAULT_POINT_THICKNESS
|
"stroke_width" : 2*DEFAULT_STROKE_WIDTH
|
||||||
}
|
}
|
||||||
number_plane = NumberPlane(**config)
|
number_plane = NumberPlane(**config)
|
||||||
phrase1, phrase2 = TextMobject([
|
phrase1, phrase2 = TextMobject([
|
||||||
|
Binary file not shown.
@ -40,7 +40,11 @@ def load_data():
|
|||||||
below.
|
below.
|
||||||
"""
|
"""
|
||||||
f = gzip.open('/Users/grant/cs/neural-networks-and-deep-learning/data/mnist.pkl.gz', 'rb')
|
f = gzip.open('/Users/grant/cs/neural-networks-and-deep-learning/data/mnist.pkl.gz', 'rb')
|
||||||
training_data, validation_data, test_data = pickle.load(f)
|
u = pickle._Unpickler(f)
|
||||||
|
u.encoding = 'latin1'
|
||||||
|
# p = u.load()
|
||||||
|
# training_data, validation_data, test_data = pickle.load(f)
|
||||||
|
training_data, validation_data, test_data = u.load()
|
||||||
f.close()
|
f.close()
|
||||||
return (training_data, validation_data, test_data)
|
return (training_data, validation_data, test_data)
|
||||||
|
|
||||||
|
@ -165,8 +165,8 @@ class Network(object):
|
|||||||
return sum(int(x == y) for (x, y) in test_results)
|
return sum(int(x == y) for (x, y) in test_results)
|
||||||
|
|
||||||
def cost_derivative(self, output_activations, y):
|
def cost_derivative(self, output_activations, y):
|
||||||
"""Return the vector of partial derivatives \partial C_x /
|
"""Return the vector of partial derivatives \\partial C_x /
|
||||||
\partial a for the output activations."""
|
\\partial a for the output activations."""
|
||||||
return (output_activations-y)
|
return (output_activations-y)
|
||||||
|
|
||||||
#### Miscellaneous functions
|
#### Miscellaneous functions
|
||||||
@ -195,8 +195,8 @@ def ReLU_prime(z):
|
|||||||
return (np.array(z) > 0).astype('int')
|
return (np.array(z) > 0).astype('int')
|
||||||
|
|
||||||
def get_pretrained_network():
|
def get_pretrained_network():
|
||||||
data_file = open(PRETRAINED_DATA_FILE)
|
data_file = open(PRETRAINED_DATA_FILE, 'rb')
|
||||||
weights, biases = pickle.load(data_file)
|
weights, biases = pickle.load(data_file, encoding='latin1')
|
||||||
sizes = [w.shape[1] for w in weights]
|
sizes = [w.shape[1] for w in weights]
|
||||||
sizes.append(weights[-1].shape[0])
|
sizes.append(weights[-1].shape[0])
|
||||||
network = Network(sizes)
|
network = Network(sizes)
|
||||||
@ -275,13 +275,13 @@ def save_organized_images(n_images_per_number = 10):
|
|||||||
if len(image_map[value]) >= n_images_per_number:
|
if len(image_map[value]) >= n_images_per_number:
|
||||||
continue
|
continue
|
||||||
image_map[value].append(im)
|
image_map[value].append(im)
|
||||||
data_file = open(IMAGE_MAP_DATA_FILE, mode = 'w')
|
data_file = open(IMAGE_MAP_DATA_FILE, mode = 'wb')
|
||||||
pickle.dump(image_map, data_file)
|
pickle.dump(image_map, data_file)
|
||||||
data_file.close()
|
data_file.close()
|
||||||
|
|
||||||
def get_organized_images():
|
def get_organized_images():
|
||||||
data_file = open(IMAGE_MAP_DATA_FILE, mode = 'r')
|
data_file = open(IMAGE_MAP_DATA_FILE, mode = 'r')
|
||||||
image_map = pickle.load(data_file)
|
image_map = pickle.load(data_file, encoding='latin1')
|
||||||
data_file.close()
|
data_file.close()
|
||||||
return image_map
|
return image_map
|
||||||
|
|
||||||
|
@ -144,10 +144,10 @@ class NetworkMobject(VGroup):
|
|||||||
if size > n_neurons:
|
if size > n_neurons:
|
||||||
dots = TexMobject("\\vdots")
|
dots = TexMobject("\\vdots")
|
||||||
dots.move_to(neurons)
|
dots.move_to(neurons)
|
||||||
VGroup(*neurons[:len(neurons)/2]).next_to(
|
VGroup(*neurons[:len(neurons) // 2]).next_to(
|
||||||
dots, UP, MED_SMALL_BUFF
|
dots, UP, MED_SMALL_BUFF
|
||||||
)
|
)
|
||||||
VGroup(*neurons[len(neurons)/2:]).next_to(
|
VGroup(*neurons[len(neurons) // 2:]).next_to(
|
||||||
dots, DOWN, MED_SMALL_BUFF
|
dots, DOWN, MED_SMALL_BUFF
|
||||||
)
|
)
|
||||||
layer.dots = dots
|
layer.dots = dots
|
||||||
|
@ -453,7 +453,7 @@ class DefineInscribedSquareProblem(ClosedLoopScene):
|
|||||||
pi_loop.set_fill(opacity = 0)
|
pi_loop.set_fill(opacity = 0)
|
||||||
pi_loop.set_stroke(
|
pi_loop.set_stroke(
|
||||||
color = WHITE,
|
color = WHITE,
|
||||||
width = DEFAULT_POINT_THICKNESS
|
width = DEFAULT_STROKE_WIDTH
|
||||||
)
|
)
|
||||||
pi_loop.set_height(4)
|
pi_loop.set_height(4)
|
||||||
randy = Randolph()
|
randy = Randolph()
|
||||||
|
Reference in New Issue
Block a user