mirror of
https://github.com/3b1b/manim.git
synced 2025-08-01 17:29:06 +08:00
Reconfigured ParametricCurve
This commit is contained in:
@ -84,16 +84,12 @@ class CoordinateSystem():
|
|||||||
)
|
)
|
||||||
return self.axis_labels
|
return self.axis_labels
|
||||||
|
|
||||||
def get_graph(self, function, x_min=None, x_max=None, **kwargs):
|
def get_graph(self, function, x_range=None, **kwargs):
|
||||||
if x_min is None:
|
if x_range is None:
|
||||||
x_min = self.x_min
|
x_range = self.x_range
|
||||||
if x_max is None:
|
|
||||||
x_max = self.x_max
|
|
||||||
|
|
||||||
graph = ParametricCurve(
|
graph = ParametricCurve(
|
||||||
lambda t: self.coords_to_point(t, function(t)),
|
lambda t: self.coords_to_point(t, function(t)),
|
||||||
t_min=x_min,
|
t_range=x_range,
|
||||||
t_max=x_max,
|
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
graph.underlying_function = function
|
graph.underlying_function = function
|
||||||
@ -102,9 +98,7 @@ class CoordinateSystem():
|
|||||||
def get_parametric_curve(self, function, **kwargs):
|
def get_parametric_curve(self, function, **kwargs):
|
||||||
dim = self.dimension
|
dim = self.dimension
|
||||||
graph = ParametricCurve(
|
graph = ParametricCurve(
|
||||||
lambda t: self.coords_to_point(
|
lambda t: self.coords_to_point(*function(t)[:dim]),
|
||||||
*function(t)[:dim]
|
|
||||||
),
|
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
graph.underlying_function = function
|
graph.underlying_function = function
|
||||||
@ -119,8 +113,8 @@ class CoordinateSystem():
|
|||||||
graph.point_from_proportion(a)
|
graph.point_from_proportion(a)
|
||||||
)[0],
|
)[0],
|
||||||
target=x,
|
target=x,
|
||||||
lower_bound=self.x_min,
|
lower_bound=self.x_range[0],
|
||||||
upper_bound=self.x_max,
|
upper_bound=self.x_range[1],
|
||||||
)
|
)
|
||||||
if alpha is not None:
|
if alpha is not None:
|
||||||
return graph.point_from_proportion(alpha)
|
return graph.point_from_proportion(alpha)
|
||||||
|
@ -6,29 +6,33 @@ from manimlib.utils.space_ops import get_norm
|
|||||||
|
|
||||||
class ParametricCurve(VMobject):
|
class ParametricCurve(VMobject):
|
||||||
CONFIG = {
|
CONFIG = {
|
||||||
"t_min": 0,
|
"t_range": [0, 1, 0.1],
|
||||||
"t_max": 1,
|
|
||||||
"step_size": 0.2,
|
|
||||||
"min_samples": 8,
|
"min_samples": 8,
|
||||||
"dt": 1e-8,
|
"epsilon": 1e-8,
|
||||||
# TODO, automatically figure out discontinuities
|
# TODO, automatically figure out discontinuities
|
||||||
"discontinuities": [],
|
"discontinuities": [],
|
||||||
}
|
}
|
||||||
|
|
||||||
def __init__(self, function=None, **kwargs):
|
def __init__(self, t_func, t_range=None, **kwargs):
|
||||||
# either get a function from __init__ or from CONFIG
|
digest_config(self, kwargs)
|
||||||
self.function = function or self.function
|
if t_range is not None:
|
||||||
|
self.t_range[:len(t_range)] = t_range
|
||||||
|
# To be backward compatible with all the scenes specifying t_min, t_max, step_size
|
||||||
|
self.t_range = [
|
||||||
|
kwargs.get("t_min", self.t_range[0]),
|
||||||
|
kwargs.get("t_max", self.t_range[1]),
|
||||||
|
kwargs.get("step_size", self.t_range[2]),
|
||||||
|
]
|
||||||
|
self.t_func = t_func
|
||||||
VMobject.__init__(self, **kwargs)
|
VMobject.__init__(self, **kwargs)
|
||||||
|
|
||||||
def get_function(self):
|
|
||||||
return self.function
|
|
||||||
|
|
||||||
def get_point_from_function(self, t):
|
def get_point_from_function(self, t):
|
||||||
return self.function(t)
|
return self.t_func(t)
|
||||||
|
|
||||||
def init_points(self):
|
def init_points(self):
|
||||||
t_min, t_max = self.t_min, self.t_max
|
# TODO, this seems like a mess.
|
||||||
dt = self.dt
|
t_min, t_max, step = self.t_range
|
||||||
|
epsilon = self.epsilon
|
||||||
|
|
||||||
discontinuities = filter(
|
discontinuities = filter(
|
||||||
lambda t: t_min <= t <= t_max,
|
lambda t: t_min <= t <= t_max,
|
||||||
@ -36,24 +40,24 @@ class ParametricCurve(VMobject):
|
|||||||
)
|
)
|
||||||
discontinuities = np.array(list(discontinuities))
|
discontinuities = np.array(list(discontinuities))
|
||||||
boundary_times = [
|
boundary_times = [
|
||||||
self.t_min, self.t_max,
|
t_min, t_max,
|
||||||
*(discontinuities - dt),
|
*(discontinuities - epsilon),
|
||||||
*(discontinuities + dt),
|
*(discontinuities + epsilon),
|
||||||
]
|
]
|
||||||
boundary_times.sort()
|
boundary_times.sort()
|
||||||
for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]):
|
for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]):
|
||||||
# Get an initial sample of points
|
# Get an initial sample of points
|
||||||
t_range = list(np.linspace(t1, t2, self.min_samples + 1))
|
t_range = list(np.linspace(t1, t2, self.min_samples + 1))
|
||||||
samples = [self.function(t) for t in t_range]
|
samples = np.array([self.t_func(t) for t in t_range])
|
||||||
|
|
||||||
# Take more samples based on the distances between them
|
# Take more samples based on the distances between them
|
||||||
norms = [get_norm(p2 - p1) for p1, p2 in zip(samples, samples[1:])]
|
norms = [get_norm(p2 - p1) for p1, p2 in zip(samples, samples[1:])]
|
||||||
full_t_range = [t1]
|
full_t_range = [t1]
|
||||||
for s1, s2, norm in zip(t_range, t_range[1:], norms):
|
for s1, s2, norm in zip(t_range, t_range[1:], norms):
|
||||||
n_inserts = int(norm / self.step_size)
|
n_inserts = int(norm / step)
|
||||||
full_t_range += list(np.linspace(s1, s2, n_inserts + 1)[1:])
|
full_t_range += list(np.linspace(s1, s2, n_inserts + 1)[1:])
|
||||||
|
|
||||||
points = np.array([self.function(t) for t in full_t_range])
|
points = np.array([self.t_func(t) for t in full_t_range])
|
||||||
valid_indices = np.isfinite(points).all(1)
|
valid_indices = np.isfinite(points).all(1)
|
||||||
points = points[valid_indices]
|
points = points[valid_indices]
|
||||||
if len(points) > 0:
|
if len(points) > 0:
|
||||||
@ -66,25 +70,23 @@ class ParametricCurve(VMobject):
|
|||||||
class FunctionGraph(ParametricCurve):
|
class FunctionGraph(ParametricCurve):
|
||||||
CONFIG = {
|
CONFIG = {
|
||||||
"color": YELLOW,
|
"color": YELLOW,
|
||||||
"x_min": -FRAME_X_RADIUS,
|
"x_range": [-8, 8, 0.1],
|
||||||
"x_max": FRAME_X_RADIUS,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
def __init__(self, function, **kwargs):
|
def __init__(self, function, x_range=None, **kwargs):
|
||||||
digest_config(self, kwargs)
|
digest_config(self, kwargs)
|
||||||
self.parametric_function = \
|
|
||||||
lambda t: np.array([t, function(t), 0])
|
|
||||||
ParametricCurve.__init__(
|
|
||||||
self,
|
|
||||||
self.parametric_function,
|
|
||||||
t_min=self.x_min,
|
|
||||||
t_max=self.x_max,
|
|
||||||
**kwargs
|
|
||||||
)
|
|
||||||
self.function = function
|
self.function = function
|
||||||
|
|
||||||
|
if x_range is not None:
|
||||||
|
self.x_range[:len(x_range)] = x_range
|
||||||
|
|
||||||
|
def parametric_function(t):
|
||||||
|
return [t, function(t), 0]
|
||||||
|
|
||||||
|
super().__init__(parametric_function, x_range, **kwargs)
|
||||||
|
|
||||||
def get_function(self):
|
def get_function(self):
|
||||||
return self.function
|
return self.function
|
||||||
|
|
||||||
def get_point_from_function(self, x):
|
def get_point_from_function(self, x):
|
||||||
return self.parametric_function(x)
|
return self.t_func(x)
|
||||||
|
Reference in New Issue
Block a user