mirror of
https://github.com/3b1b/manim.git
synced 2025-08-01 06:22:54 +08:00
Beginning part2 of nn project
This commit is contained in:
@ -330,9 +330,9 @@ class LaggedStart(Animation):
|
||||
anim.update(alpha)
|
||||
return self
|
||||
|
||||
def clean_up(self, *args, **kwargs):
|
||||
for anim in self.subanimations:
|
||||
anim.clean_up(*args, **kwargs)
|
||||
# def clean_up(self, *args, **kwargs):
|
||||
# for anim in self.subanimations:
|
||||
# anim.clean_up(*args, **kwargs)
|
||||
|
||||
class DelayByOrder(Animation):
|
||||
"""
|
||||
|
27
nn/part1.py
27
nn/part1.py
@ -127,6 +127,7 @@ class NetworkMobject(VGroup):
|
||||
"max_shown_neurons" : 16,
|
||||
"brace_for_large_layers" : True,
|
||||
"average_shown_activation_of_large_layer" : True,
|
||||
"include_output_labels" : False,
|
||||
}
|
||||
def __init__(self, neural_network, **kwargs):
|
||||
VGroup.__init__(self, **kwargs)
|
||||
@ -143,6 +144,8 @@ class NetworkMobject(VGroup):
|
||||
layers.arrange_submobjects(RIGHT, buff = self.layer_to_layer_buff)
|
||||
self.layers = layers
|
||||
self.add(self.layers)
|
||||
if self.include_output_labels:
|
||||
self.add_output_labels()
|
||||
|
||||
def get_layer(self, size):
|
||||
layer = VGroup()
|
||||
@ -255,18 +258,6 @@ class NetworkMobject(VGroup):
|
||||
submobject_mode = "lagged_start"
|
||||
)]
|
||||
|
||||
class MNistNetworkMobject(NetworkMobject):
|
||||
CONFIG = {
|
||||
"neuron_to_neuron_buff" : SMALL_BUFF,
|
||||
"layer_to_layer_buff" : 1.5,
|
||||
"edge_stroke_width" : 1,
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
network = get_pretrained_network()
|
||||
NetworkMobject.__init__(self, network, **kwargs)
|
||||
self.add_output_labels()
|
||||
|
||||
def add_output_labels(self):
|
||||
self.output_labels = VGroup()
|
||||
for n, neuron in enumerate(self.layers[-1].neurons):
|
||||
@ -277,6 +268,18 @@ class MNistNetworkMobject(NetworkMobject):
|
||||
self.output_labels.add(label)
|
||||
self.add(self.output_labels)
|
||||
|
||||
class MNistNetworkMobject(NetworkMobject):
|
||||
CONFIG = {
|
||||
"neuron_to_neuron_buff" : SMALL_BUFF,
|
||||
"layer_to_layer_buff" : 1.5,
|
||||
"edge_stroke_width" : 1,
|
||||
"include_output_labels" : True,
|
||||
}
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
network = get_pretrained_network()
|
||||
NetworkMobject.__init__(self, network, **kwargs)
|
||||
|
||||
class NetworkScene(Scene):
|
||||
CONFIG = {
|
||||
"layer_sizes" : [8, 6, 6, 4],
|
||||
|
403
nn/part2.py
Normal file
403
nn/part2.py
Normal file
@ -0,0 +1,403 @@
|
||||
import sys
|
||||
import os.path
|
||||
import cv2
|
||||
|
||||
from helpers import *
|
||||
|
||||
from mobject.tex_mobject import TexMobject
|
||||
from mobject import Mobject, Group
|
||||
from mobject.image_mobject import ImageMobject
|
||||
from mobject.vectorized_mobject import *
|
||||
|
||||
from animation.animation import Animation
|
||||
from animation.transform import *
|
||||
from animation.simple_animations import *
|
||||
from animation.playground import *
|
||||
from animation.continual_animation import *
|
||||
from topics.geometry import *
|
||||
from topics.characters import *
|
||||
from topics.functions import *
|
||||
from topics.fractals import *
|
||||
from topics.number_line import *
|
||||
from topics.combinatorics import *
|
||||
from topics.numerals import *
|
||||
from topics.three_dimensions import *
|
||||
from topics.objects import *
|
||||
from topics.probability import *
|
||||
from topics.complex_numbers import *
|
||||
from topics.graph_scene import *
|
||||
from topics.common_scenes import *
|
||||
from scene import Scene
|
||||
from scene.reconfigurable_scene import ReconfigurableScene
|
||||
from scene.zoomed_scene import *
|
||||
from camera import Camera
|
||||
from mobject.svg_mobject import *
|
||||
from mobject.tex_mobject import *
|
||||
|
||||
from nn.network import *
|
||||
from nn.part1 import *
|
||||
|
||||
def get_training_image_group(train_in, train_out):
|
||||
image = MNistMobject(train_in)
|
||||
image.scale_to_fit_height(1)
|
||||
arrow = Vector(RIGHT, color = BLUE, buff = 0)
|
||||
output = np.argmax(train_out)
|
||||
output_tex = TexMobject(str(output)).scale(1.5)
|
||||
result = Group(image, arrow, output_tex)
|
||||
result.arrange_submobjects(RIGHT)
|
||||
result.to_edge(UP)
|
||||
return result
|
||||
|
||||
########
|
||||
|
||||
class ShowLastVideo(TeacherStudentsScene):
|
||||
def construct(self):
|
||||
frame = ScreenRectangle()
|
||||
frame.scale_to_fit_height(4.5)
|
||||
frame.to_corner(UP+LEFT)
|
||||
title = TextMobject("But what \\emph{is} a Neural Network")
|
||||
title.move_to(frame)
|
||||
title.to_edge(UP)
|
||||
frame.next_to(title, DOWN)
|
||||
|
||||
assumption_words = TextMobject(
|
||||
"I assume you've\\\\ watched this"
|
||||
)
|
||||
assumption_words.move_to(frame)
|
||||
assumption_words.to_edge(RIGHT)
|
||||
arrow = Arrow(RIGHT, LEFT, color = BLUE)
|
||||
arrow.next_to(assumption_words, LEFT)
|
||||
|
||||
|
||||
self.play(
|
||||
ShowCreation(frame),
|
||||
self.teacher.change, "raise_right_hand"
|
||||
)
|
||||
self.play(
|
||||
Write(title),
|
||||
self.get_student_changes(*["thinking"]*3)
|
||||
)
|
||||
self.play(
|
||||
Animation(title),
|
||||
GrowArrow(arrow),
|
||||
FadeIn(assumption_words)
|
||||
)
|
||||
self.dither(5)
|
||||
|
||||
class PreviewLearning(NetworkScene):
|
||||
CONFIG = {
|
||||
"layer_sizes" : DEFAULT_LAYER_SIZES,
|
||||
"network_mob_config" : {
|
||||
"neuron_to_neuron_buff" : SMALL_BUFF,
|
||||
"layer_to_layer_buff" : 2,
|
||||
"edge_stroke_width" : 1,
|
||||
"neuron_stroke_color" : WHITE,
|
||||
"neuron_stroke_width" : 2,
|
||||
"neuron_fill_color" : WHITE,
|
||||
"average_shown_activation_of_large_layer" : False,
|
||||
"edge_propogation_color" : GREEN,
|
||||
"edge_propogation_time" : 2,
|
||||
"include_output_labels" : True,
|
||||
},
|
||||
"n_examples" : 15,
|
||||
"max_stroke_width" : 3,
|
||||
"stroke_width_exp" : 3,
|
||||
"eta" : 5.0,
|
||||
}
|
||||
def construct(self):
|
||||
self.initialize_network()
|
||||
self.add_training_words()
|
||||
self.show_training()
|
||||
|
||||
def initialize_network(self):
|
||||
self.network_mob.scale(0.7)
|
||||
self.network_mob.to_edge(DOWN)
|
||||
self.color_network_edges()
|
||||
|
||||
def add_training_words(self):
|
||||
words = TextMobject("Training in \\\\ progress $\\dots$")
|
||||
words.scale(1.5)
|
||||
words.to_corner(UP+LEFT)
|
||||
|
||||
self.add(words)
|
||||
|
||||
def show_training(self):
|
||||
training_data, validation_data, test_data = load_data_wrapper()
|
||||
for train_in, train_out in training_data[:self.n_examples]:
|
||||
image = get_training_image_group(train_in, train_out)
|
||||
self.activate_network(train_in, FadeIn(image))
|
||||
self.backprop_one_example(
|
||||
train_in, train_out, FadeOut(image)
|
||||
)
|
||||
|
||||
def activate_network(self, train_in, *added_anims):
|
||||
network_mob = self.network_mob
|
||||
layers = network_mob.layers
|
||||
activations = self.network.get_activation_of_all_layers(train_in)
|
||||
active_layers = [
|
||||
self.network_mob.get_active_layer(i, vect)
|
||||
for i, vect in enumerate(activations)
|
||||
]
|
||||
all_edges = VGroup(*it.chain(*network_mob.edge_groups))
|
||||
edge_animation = LaggedStart(
|
||||
ShowCreationThenDestruction,
|
||||
all_edges.copy().set_fill(YELLOW),
|
||||
run_time = 1.5,
|
||||
lag_ratio = 0.3,
|
||||
remover = True,
|
||||
)
|
||||
layer_animation = Transform(
|
||||
VGroup(*layers), VGroup(*active_layers),
|
||||
run_time = 1.5,
|
||||
submobject_mode = "lagged_start",
|
||||
rate_func = None,
|
||||
)
|
||||
|
||||
self.play(edge_animation, layer_animation, *added_anims)
|
||||
|
||||
def backprop_one_example(self, train_in, train_out, *added_outro_anims):
|
||||
network_mob = self.network_mob
|
||||
nabla_b, nabla_w = self.network.backprop(train_in, train_out)
|
||||
neuron_groups = VGroup(*[
|
||||
layer.neurons
|
||||
for layer in network_mob.layers[1:]
|
||||
])
|
||||
delta_neuron_groups = neuron_groups.copy()
|
||||
edge_groups = network_mob.edge_groups
|
||||
delta_edge_groups = VGroup(*[
|
||||
edge_group.copy()
|
||||
for edge_group in edge_groups
|
||||
])
|
||||
tups = zip(
|
||||
it.count(), nabla_b, nabla_w,
|
||||
delta_neuron_groups, neuron_groups,
|
||||
delta_edge_groups, edge_groups
|
||||
)
|
||||
for i, nb, nw, delta_neurons, neurons, delta_edges, edges in reversed(tups):
|
||||
shown_nw = self.get_adjusted_first_matrix(nw)
|
||||
if np.max(shown_nw) == 0:
|
||||
shown_nw = (2*np.random.random(shown_nw.shape)-1)**5
|
||||
max_b = np.max(np.abs(nb))
|
||||
max_w = np.max(np.abs(shown_nw))
|
||||
for neuron, b in zip(delta_neurons, nb):
|
||||
color = RED_E if b > 0 else GREEN_E
|
||||
# neuron.set_fill(color, abs(b)/max_b)
|
||||
neuron.set_stroke(color, 3)
|
||||
for edge, w in zip(delta_edges.split(), shown_nw.T.flatten()):
|
||||
edge.set_stroke(
|
||||
RED_E if w > 0 else GREEN_E,
|
||||
3*abs(w)/max_w
|
||||
)
|
||||
edge.rotate_in_place(np.pi)
|
||||
if i == 0:
|
||||
delta_edges.submobjects = [
|
||||
delta_edges[j]
|
||||
for j in np.argsort(shown_nw.T.flatten())
|
||||
]
|
||||
network = self.network
|
||||
network.weights[i] -= self.eta*nw
|
||||
network.biases[i] -= self.eta*nb
|
||||
|
||||
reversed_delta_edges = VGroup(*reversed(delta_edge_groups))
|
||||
reversed_delta_neurons = VGroup(*reversed(delta_neuron_groups))
|
||||
edge_groups.save_state()
|
||||
self.play(
|
||||
ShowCreation(
|
||||
reversed_delta_edges,
|
||||
run_time = 2,
|
||||
submobject_mode = "lagged_start",
|
||||
lag_factor = 6,
|
||||
),
|
||||
FadeIn(
|
||||
reversed_delta_neurons,
|
||||
run_time = 2,
|
||||
submobject_mode = "lagged_start",
|
||||
lag_factor = 4,
|
||||
)
|
||||
)
|
||||
self.color_network_edges()
|
||||
self.play(*it.chain(
|
||||
[ReplacementTransform(
|
||||
edge_groups.saved_state, edge_groups,
|
||||
)],
|
||||
map(FadeOut, [reversed_delta_edges, reversed_delta_neurons]),
|
||||
added_outro_anims,
|
||||
))
|
||||
|
||||
#####
|
||||
|
||||
def get_adjusted_first_matrix(self, matrix):
|
||||
n = self.network_mob.max_shown_neurons
|
||||
if matrix.shape[1] > n:
|
||||
half = matrix.shape[1]/2
|
||||
return matrix[:,half-n/2:half+n/2]
|
||||
else:
|
||||
return matrix
|
||||
|
||||
def color_network_edges(self):
|
||||
layers = self.network_mob.layers
|
||||
weight_matrices = self.network.weights
|
||||
for layer, matrix in zip(layers[1:], weight_matrices):
|
||||
matrix = self.get_adjusted_first_matrix(matrix)
|
||||
matrix_max = np.max(matrix)
|
||||
for neuron, row in zip(layer.neurons, matrix):
|
||||
for edge, w in zip(neuron.edges_in, row):
|
||||
color = GREEN if w > 0 else RED
|
||||
msw = self.max_stroke_width
|
||||
swe = self.stroke_width_exp
|
||||
sw = msw*(abs(w)/matrix_max)**swe
|
||||
sw = min(sw, msw)
|
||||
edge.set_stroke(color, sw)
|
||||
|
||||
class TrainingVsTestData(Scene):
|
||||
CONFIG = {
|
||||
"n_examples" : 10,
|
||||
"n_new_examples_shown" : 10,
|
||||
}
|
||||
def construct(self):
|
||||
self.initialize_data()
|
||||
self.introduce_all_data()
|
||||
self.subdivide_into_training_and_testing()
|
||||
self.scroll_through_much_data()
|
||||
|
||||
def initialize_data(self):
|
||||
training_data, validation_data, test_data = load_data_wrapper()
|
||||
self.data = training_data
|
||||
self.curr_index = 0
|
||||
|
||||
def get_examples(self):
|
||||
ci = self.curr_index
|
||||
self.curr_index += self.n_examples
|
||||
group = Group(*it.starmap(
|
||||
get_training_image_group,
|
||||
self.data[ci:ci+self.n_examples]
|
||||
))
|
||||
group.arrange_submobjects(DOWN)
|
||||
group.scale(0.5)
|
||||
return group
|
||||
|
||||
def introduce_all_data(self):
|
||||
training_examples, test_examples = [
|
||||
self.get_examples() for x in range(2)
|
||||
]
|
||||
|
||||
self.play(
|
||||
LaggedStart(FadeIn, training_examples),
|
||||
LaggedStart(FadeIn, test_examples),
|
||||
)
|
||||
|
||||
self.training_examples = training_examples
|
||||
self.test_examples = test_examples
|
||||
|
||||
def subdivide_into_training_and_testing(self):
|
||||
training_examples = self.training_examples
|
||||
test_examples = self.test_examples
|
||||
for examples in training_examples, test_examples:
|
||||
examples.generate_target()
|
||||
training_examples.target.shift(2*LEFT)
|
||||
test_examples.target.shift(2*RIGHT)
|
||||
|
||||
train_brace = Brace(training_examples.target, LEFT)
|
||||
train_words = train_brace.get_text("Train on \\\\ these")
|
||||
test_brace = Brace(test_examples.target, RIGHT)
|
||||
test_words = test_brace.get_text("Test on \\\\ these")
|
||||
|
||||
bools = [True]*(len(test_examples)-1) + [False]
|
||||
random.shuffle(bools)
|
||||
marks = VGroup()
|
||||
for is_correct, test_example in zip(bools, test_examples.target):
|
||||
if is_correct:
|
||||
mark = TexMobject("\\checkmark")
|
||||
mark.highlight(GREEN)
|
||||
else:
|
||||
mark = TexMobject("\\times")
|
||||
mark.highlight(RED)
|
||||
mark.next_to(test_example, LEFT)
|
||||
marks.add(mark)
|
||||
|
||||
self.play(
|
||||
MoveToTarget(training_examples),
|
||||
GrowFromCenter(train_brace),
|
||||
FadeIn(train_words)
|
||||
)
|
||||
self.dither()
|
||||
self.play(
|
||||
MoveToTarget(test_examples),
|
||||
GrowFromCenter(test_brace),
|
||||
FadeIn(test_words)
|
||||
)
|
||||
self.play(Write(marks))
|
||||
self.dither()
|
||||
|
||||
def scroll_through_much_data(self):
|
||||
training_examples = self.training_examples
|
||||
colors = color_gradient([BLUE, YELLOW], self.n_new_examples_shown)
|
||||
for color in colors:
|
||||
new_examples = self.get_examples()
|
||||
new_examples.move_to(training_examples)
|
||||
for train_ex, new_ex in zip(training_examples, new_examples):
|
||||
self.remove(train_ex)
|
||||
self.add(new_ex)
|
||||
new_ex[0][0].highlight(color)
|
||||
self.dither(1./10)
|
||||
training_examples = new_examples
|
||||
|
||||
class NotSciFi(TeacherStudentsScene):
|
||||
def construct(self):
|
||||
students = self.students
|
||||
self.student_says(
|
||||
"Machines learning?!?",
|
||||
student_index = 0,
|
||||
target_mode = "confused",
|
||||
)
|
||||
bubble = students[0].bubble
|
||||
students[0].bubble = None
|
||||
self.student_says(
|
||||
"Run!", student_index = 2,
|
||||
target_mode = "pleading",
|
||||
bubble_kwargs = {"direction" : LEFT}
|
||||
)
|
||||
self.dither()
|
||||
students[0].bubble = bubble
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user