Beginning part2 of nn project

This commit is contained in:
Grant Sanderson
2017-10-02 18:19:38 -07:00
parent c474207c34
commit 5048fe80a5
3 changed files with 421 additions and 15 deletions

View File

@ -330,9 +330,9 @@ class LaggedStart(Animation):
anim.update(alpha) anim.update(alpha)
return self return self
def clean_up(self, *args, **kwargs): # def clean_up(self, *args, **kwargs):
for anim in self.subanimations: # for anim in self.subanimations:
anim.clean_up(*args, **kwargs) # anim.clean_up(*args, **kwargs)
class DelayByOrder(Animation): class DelayByOrder(Animation):
""" """

View File

@ -127,6 +127,7 @@ class NetworkMobject(VGroup):
"max_shown_neurons" : 16, "max_shown_neurons" : 16,
"brace_for_large_layers" : True, "brace_for_large_layers" : True,
"average_shown_activation_of_large_layer" : True, "average_shown_activation_of_large_layer" : True,
"include_output_labels" : False,
} }
def __init__(self, neural_network, **kwargs): def __init__(self, neural_network, **kwargs):
VGroup.__init__(self, **kwargs) VGroup.__init__(self, **kwargs)
@ -143,6 +144,8 @@ class NetworkMobject(VGroup):
layers.arrange_submobjects(RIGHT, buff = self.layer_to_layer_buff) layers.arrange_submobjects(RIGHT, buff = self.layer_to_layer_buff)
self.layers = layers self.layers = layers
self.add(self.layers) self.add(self.layers)
if self.include_output_labels:
self.add_output_labels()
def get_layer(self, size): def get_layer(self, size):
layer = VGroup() layer = VGroup()
@ -255,18 +258,6 @@ class NetworkMobject(VGroup):
submobject_mode = "lagged_start" submobject_mode = "lagged_start"
)] )]
class MNistNetworkMobject(NetworkMobject):
CONFIG = {
"neuron_to_neuron_buff" : SMALL_BUFF,
"layer_to_layer_buff" : 1.5,
"edge_stroke_width" : 1,
}
def __init__(self, **kwargs):
network = get_pretrained_network()
NetworkMobject.__init__(self, network, **kwargs)
self.add_output_labels()
def add_output_labels(self): def add_output_labels(self):
self.output_labels = VGroup() self.output_labels = VGroup()
for n, neuron in enumerate(self.layers[-1].neurons): for n, neuron in enumerate(self.layers[-1].neurons):
@ -277,6 +268,18 @@ class MNistNetworkMobject(NetworkMobject):
self.output_labels.add(label) self.output_labels.add(label)
self.add(self.output_labels) self.add(self.output_labels)
class MNistNetworkMobject(NetworkMobject):
CONFIG = {
"neuron_to_neuron_buff" : SMALL_BUFF,
"layer_to_layer_buff" : 1.5,
"edge_stroke_width" : 1,
"include_output_labels" : True,
}
def __init__(self, **kwargs):
network = get_pretrained_network()
NetworkMobject.__init__(self, network, **kwargs)
class NetworkScene(Scene): class NetworkScene(Scene):
CONFIG = { CONFIG = {
"layer_sizes" : [8, 6, 6, 4], "layer_sizes" : [8, 6, 6, 4],

403
nn/part2.py Normal file
View File

@ -0,0 +1,403 @@
import sys
import os.path
import cv2
from helpers import *
from mobject.tex_mobject import TexMobject
from mobject import Mobject, Group
from mobject.image_mobject import ImageMobject
from mobject.vectorized_mobject import *
from animation.animation import Animation
from animation.transform import *
from animation.simple_animations import *
from animation.playground import *
from animation.continual_animation import *
from topics.geometry import *
from topics.characters import *
from topics.functions import *
from topics.fractals import *
from topics.number_line import *
from topics.combinatorics import *
from topics.numerals import *
from topics.three_dimensions import *
from topics.objects import *
from topics.probability import *
from topics.complex_numbers import *
from topics.graph_scene import *
from topics.common_scenes import *
from scene import Scene
from scene.reconfigurable_scene import ReconfigurableScene
from scene.zoomed_scene import *
from camera import Camera
from mobject.svg_mobject import *
from mobject.tex_mobject import *
from nn.network import *
from nn.part1 import *
def get_training_image_group(train_in, train_out):
image = MNistMobject(train_in)
image.scale_to_fit_height(1)
arrow = Vector(RIGHT, color = BLUE, buff = 0)
output = np.argmax(train_out)
output_tex = TexMobject(str(output)).scale(1.5)
result = Group(image, arrow, output_tex)
result.arrange_submobjects(RIGHT)
result.to_edge(UP)
return result
########
class ShowLastVideo(TeacherStudentsScene):
def construct(self):
frame = ScreenRectangle()
frame.scale_to_fit_height(4.5)
frame.to_corner(UP+LEFT)
title = TextMobject("But what \\emph{is} a Neural Network")
title.move_to(frame)
title.to_edge(UP)
frame.next_to(title, DOWN)
assumption_words = TextMobject(
"I assume you've\\\\ watched this"
)
assumption_words.move_to(frame)
assumption_words.to_edge(RIGHT)
arrow = Arrow(RIGHT, LEFT, color = BLUE)
arrow.next_to(assumption_words, LEFT)
self.play(
ShowCreation(frame),
self.teacher.change, "raise_right_hand"
)
self.play(
Write(title),
self.get_student_changes(*["thinking"]*3)
)
self.play(
Animation(title),
GrowArrow(arrow),
FadeIn(assumption_words)
)
self.dither(5)
class PreviewLearning(NetworkScene):
CONFIG = {
"layer_sizes" : DEFAULT_LAYER_SIZES,
"network_mob_config" : {
"neuron_to_neuron_buff" : SMALL_BUFF,
"layer_to_layer_buff" : 2,
"edge_stroke_width" : 1,
"neuron_stroke_color" : WHITE,
"neuron_stroke_width" : 2,
"neuron_fill_color" : WHITE,
"average_shown_activation_of_large_layer" : False,
"edge_propogation_color" : GREEN,
"edge_propogation_time" : 2,
"include_output_labels" : True,
},
"n_examples" : 15,
"max_stroke_width" : 3,
"stroke_width_exp" : 3,
"eta" : 5.0,
}
def construct(self):
self.initialize_network()
self.add_training_words()
self.show_training()
def initialize_network(self):
self.network_mob.scale(0.7)
self.network_mob.to_edge(DOWN)
self.color_network_edges()
def add_training_words(self):
words = TextMobject("Training in \\\\ progress $\\dots$")
words.scale(1.5)
words.to_corner(UP+LEFT)
self.add(words)
def show_training(self):
training_data, validation_data, test_data = load_data_wrapper()
for train_in, train_out in training_data[:self.n_examples]:
image = get_training_image_group(train_in, train_out)
self.activate_network(train_in, FadeIn(image))
self.backprop_one_example(
train_in, train_out, FadeOut(image)
)
def activate_network(self, train_in, *added_anims):
network_mob = self.network_mob
layers = network_mob.layers
activations = self.network.get_activation_of_all_layers(train_in)
active_layers = [
self.network_mob.get_active_layer(i, vect)
for i, vect in enumerate(activations)
]
all_edges = VGroup(*it.chain(*network_mob.edge_groups))
edge_animation = LaggedStart(
ShowCreationThenDestruction,
all_edges.copy().set_fill(YELLOW),
run_time = 1.5,
lag_ratio = 0.3,
remover = True,
)
layer_animation = Transform(
VGroup(*layers), VGroup(*active_layers),
run_time = 1.5,
submobject_mode = "lagged_start",
rate_func = None,
)
self.play(edge_animation, layer_animation, *added_anims)
def backprop_one_example(self, train_in, train_out, *added_outro_anims):
network_mob = self.network_mob
nabla_b, nabla_w = self.network.backprop(train_in, train_out)
neuron_groups = VGroup(*[
layer.neurons
for layer in network_mob.layers[1:]
])
delta_neuron_groups = neuron_groups.copy()
edge_groups = network_mob.edge_groups
delta_edge_groups = VGroup(*[
edge_group.copy()
for edge_group in edge_groups
])
tups = zip(
it.count(), nabla_b, nabla_w,
delta_neuron_groups, neuron_groups,
delta_edge_groups, edge_groups
)
for i, nb, nw, delta_neurons, neurons, delta_edges, edges in reversed(tups):
shown_nw = self.get_adjusted_first_matrix(nw)
if np.max(shown_nw) == 0:
shown_nw = (2*np.random.random(shown_nw.shape)-1)**5
max_b = np.max(np.abs(nb))
max_w = np.max(np.abs(shown_nw))
for neuron, b in zip(delta_neurons, nb):
color = RED_E if b > 0 else GREEN_E
# neuron.set_fill(color, abs(b)/max_b)
neuron.set_stroke(color, 3)
for edge, w in zip(delta_edges.split(), shown_nw.T.flatten()):
edge.set_stroke(
RED_E if w > 0 else GREEN_E,
3*abs(w)/max_w
)
edge.rotate_in_place(np.pi)
if i == 0:
delta_edges.submobjects = [
delta_edges[j]
for j in np.argsort(shown_nw.T.flatten())
]
network = self.network
network.weights[i] -= self.eta*nw
network.biases[i] -= self.eta*nb
reversed_delta_edges = VGroup(*reversed(delta_edge_groups))
reversed_delta_neurons = VGroup(*reversed(delta_neuron_groups))
edge_groups.save_state()
self.play(
ShowCreation(
reversed_delta_edges,
run_time = 2,
submobject_mode = "lagged_start",
lag_factor = 6,
),
FadeIn(
reversed_delta_neurons,
run_time = 2,
submobject_mode = "lagged_start",
lag_factor = 4,
)
)
self.color_network_edges()
self.play(*it.chain(
[ReplacementTransform(
edge_groups.saved_state, edge_groups,
)],
map(FadeOut, [reversed_delta_edges, reversed_delta_neurons]),
added_outro_anims,
))
#####
def get_adjusted_first_matrix(self, matrix):
n = self.network_mob.max_shown_neurons
if matrix.shape[1] > n:
half = matrix.shape[1]/2
return matrix[:,half-n/2:half+n/2]
else:
return matrix
def color_network_edges(self):
layers = self.network_mob.layers
weight_matrices = self.network.weights
for layer, matrix in zip(layers[1:], weight_matrices):
matrix = self.get_adjusted_first_matrix(matrix)
matrix_max = np.max(matrix)
for neuron, row in zip(layer.neurons, matrix):
for edge, w in zip(neuron.edges_in, row):
color = GREEN if w > 0 else RED
msw = self.max_stroke_width
swe = self.stroke_width_exp
sw = msw*(abs(w)/matrix_max)**swe
sw = min(sw, msw)
edge.set_stroke(color, sw)
class TrainingVsTestData(Scene):
CONFIG = {
"n_examples" : 10,
"n_new_examples_shown" : 10,
}
def construct(self):
self.initialize_data()
self.introduce_all_data()
self.subdivide_into_training_and_testing()
self.scroll_through_much_data()
def initialize_data(self):
training_data, validation_data, test_data = load_data_wrapper()
self.data = training_data
self.curr_index = 0
def get_examples(self):
ci = self.curr_index
self.curr_index += self.n_examples
group = Group(*it.starmap(
get_training_image_group,
self.data[ci:ci+self.n_examples]
))
group.arrange_submobjects(DOWN)
group.scale(0.5)
return group
def introduce_all_data(self):
training_examples, test_examples = [
self.get_examples() for x in range(2)
]
self.play(
LaggedStart(FadeIn, training_examples),
LaggedStart(FadeIn, test_examples),
)
self.training_examples = training_examples
self.test_examples = test_examples
def subdivide_into_training_and_testing(self):
training_examples = self.training_examples
test_examples = self.test_examples
for examples in training_examples, test_examples:
examples.generate_target()
training_examples.target.shift(2*LEFT)
test_examples.target.shift(2*RIGHT)
train_brace = Brace(training_examples.target, LEFT)
train_words = train_brace.get_text("Train on \\\\ these")
test_brace = Brace(test_examples.target, RIGHT)
test_words = test_brace.get_text("Test on \\\\ these")
bools = [True]*(len(test_examples)-1) + [False]
random.shuffle(bools)
marks = VGroup()
for is_correct, test_example in zip(bools, test_examples.target):
if is_correct:
mark = TexMobject("\\checkmark")
mark.highlight(GREEN)
else:
mark = TexMobject("\\times")
mark.highlight(RED)
mark.next_to(test_example, LEFT)
marks.add(mark)
self.play(
MoveToTarget(training_examples),
GrowFromCenter(train_brace),
FadeIn(train_words)
)
self.dither()
self.play(
MoveToTarget(test_examples),
GrowFromCenter(test_brace),
FadeIn(test_words)
)
self.play(Write(marks))
self.dither()
def scroll_through_much_data(self):
training_examples = self.training_examples
colors = color_gradient([BLUE, YELLOW], self.n_new_examples_shown)
for color in colors:
new_examples = self.get_examples()
new_examples.move_to(training_examples)
for train_ex, new_ex in zip(training_examples, new_examples):
self.remove(train_ex)
self.add(new_ex)
new_ex[0][0].highlight(color)
self.dither(1./10)
training_examples = new_examples
class NotSciFi(TeacherStudentsScene):
def construct(self):
students = self.students
self.student_says(
"Machines learning?!?",
student_index = 0,
target_mode = "confused",
)
bubble = students[0].bubble
students[0].bubble = None
self.student_says(
"Run!", student_index = 2,
target_mode = "pleading",
bubble_kwargs = {"direction" : LEFT}
)
self.dither()
students[0].bubble = bubble