Finished additive groups of efvgt

This commit is contained in:
Grant Sanderson
2017-02-27 15:56:22 -08:00
parent 79435859de
commit 3eac6bcaf9
7 changed files with 672 additions and 96 deletions

706
efvgt.py
View File

@ -26,37 +26,44 @@ from camera import Camera
from mobject.svg_mobject import *
from mobject.tex_mobject import *
ADDER_COLOR = GREEN
MULTIPLIER_COLOR = YELLOW
def normalize(vect):
norm = np.linalg.norm(vect)
if norm == 0:
return OUT
else:
return vect/norm
def get_composite_rotation_angle_and_axis(angles, axes):
matrices = [
rotation_matrix(angle = angle, axis = axis)
for angle, axis in zip(angles, axes)
]
result_matrix = reduce(
np.dot, reversed(matrices), np.identity(3)
angle1, axis1 = 0, OUT
for angle2, axis2 in zip(angles, axes):
## Figure out what (angle3, axis3) is the same
## as first applying (angle1, axis1), then (angle2, axis2)
axis2 = normalize(axis2)
dot = np.dot(axis2, axis1)
cross = np.cross(axis2, axis1)
angle3 = 2*np.arccos(
np.cos(angle2/2)*np.cos(angle1/2) - \
np.sin(angle2/2)*np.sin(angle1/2)*dot
)
eigenvalues, eigenvectors = np.linalg.eig(result_matrix)
axis_index = np.argmin(np.abs(eigenvalues-1))
axis = np.round(eigenvectors[axis_index].astype('float'))
axis3 = (
np.sin(angle2/2)*np.cos(angle1/2)*axis2 + \
np.cos(angle2/2)*np.sin(angle1/2)*axis1 + \
np.sin(angle2/2)*np.sin(angle1/2)*cross
)
axis3 = normalize(axis3)
angle1, axis1 = angle3, axis3
possible_angles = [
np.angle(eigenvalues[(axis_index+i)%3])
for i in 1, 2
]
angle_index = np.argmin([
np.linalg.norm(
rotation_matrix(angle = angle, axis = axis) -\
result_matrix
)
for angle in possible_angles
])
angle = possible_angles[angle_index]
return angle, axis
if angle1 > np.pi:
angle1 -= 2*np.pi
return angle1, axis1
class ConfettiSpiril(Animation):
CONFIG = {
"x_start" : 0,
"spiril_radius" : 1,
"spiril_radius" : 0.5,
"num_spirils" : 4,
"run_time" : 10,
"rate_func" : None,
@ -404,18 +411,16 @@ class SymmetriesOfSquare(ThreeDScene):
self.randy = randy
def add_labels(self):
self.add_labels_and_dots(self.square)
self.add_randy_to_square(self.square)
self.play(
Write(self.square.labels),
Write(self.square.dots),
FadeIn(self.square.randy),
self.randy.change_mode, "happy",
self.randy.look_at, self.square.labels[0]
self.randy.look_at, self.square.randy.eyes
)
self.play(Blink(self.randy))
self.play(FadeOut(self.randy))
self.rotate_square(run_time = 2)
self.dither()
def show_full_group(self):
@ -446,8 +451,6 @@ class SymmetriesOfSquare(ThreeDScene):
for square, angle in zip(all_squares[1:4], [np.pi/2, np.pi, -np.pi/2]):
arcs = self.get_rotation_arcs(square, angle, MED_SMALL_BUFF)
if angle == np.pi:
arcs = VGroup(arcs[0], arcs[2])
self.play(*map(FadeIn, [square, arcs]))
square.rotation_kwargs = {"angle" : angle}
self.rotate_square(square = square, **square.rotation_kwargs)
@ -470,7 +473,7 @@ class SymmetriesOfSquare(ThreeDScene):
self.play(Indicate(all_squares[0]))
self.dither()
rotations = [
self.play(*[
Rotate(
square,
rate_func = lambda t : -there_and_back(t),
@ -479,11 +482,7 @@ class SymmetriesOfSquare(ThreeDScene):
**square.rotation_kwargs
)
for square in all_squares[1:4]
]
for rotation in rotations:
for label in rotation.target_mobject.labels:
label.rotate_in_place(-rotation.angle)
self.play(*rotations)
])
self.dither()
def show_bottom_actions(self):
@ -564,7 +563,7 @@ class SymmetriesOfSquare(ThreeDScene):
color = YELLOW
)
arc.add_tip()
if abs(angle) < np.pi:
if abs(angle) < 3*np.pi/4:
angle_multiple_range = range(1, 4)
else:
angle_multiple_range = [2]
@ -596,6 +595,13 @@ class SymmetriesOfSquare(ThreeDScene):
square.labels = labels
square.dots = dots
def add_randy_to_square(self, square, mode = "pondering"):
randy = Randolph(mode = mode)
randy.scale_to_fit_height(0.75*square.get_height())
randy.move_to(square)
square.add(randy)
square.randy = randy
class ManyGroupsAreInfinite(TeacherStudentsScene):
def construct(self):
self.teacher_says("Many groups are infinite")
@ -734,8 +740,9 @@ class CircleSymmetries(Scene):
class GroupOfCubeSymmetries(ThreeDScene):
CONFIG = {
"cube_opacity" : 0.9,
"cube_colors" : [RED, RED, GREEN, GREEN, BLUE, BLUE]
"cube_opacity" : 0.5,
"cube_colors" : [BLUE],
"put_randy_on_cube" : True,
}
def construct(self):
title = TextMobject("Group of cube symmetries")
@ -744,12 +751,8 @@ class GroupOfCubeSymmetries(ThreeDScene):
cube = self.get_cube()
face_centers = np.array([
face.get_center() for face in cube[::2]
])
angle_axis_pairs = []
for axis in face_centers:
angle_axis_pairs.append((np.pi/2, axis))
face_centers = [face.get_center() for face in cube[0:7:2]]
angle_axis_pairs = zip(3*[np.pi/2], face_centers)
for i in range(3):
ones = np.ones(3)
ones[i] = -1
@ -766,6 +769,16 @@ class GroupOfCubeSymmetries(ThreeDScene):
def get_cube(self):
cube = Cube(fill_opacity = self.cube_opacity)
cube.gradient_highlight(*self.cube_colors)
if self.put_randy_on_cube:
randy = Randolph(mode = "pondering")
randy.pupils.shift(0.01*OUT)
randy.add(randy.pupils.copy().shift(0.02*IN))
for submob in randy.submobject_family():
submob.part_of_three_d_mobject = True
randy.scale(0.5)
face = cube[1]
randy.move_to(face)
face.add(randy)
pose_matrix = self.get_pose_matrix()
cube.apply_function(
lambda p : np.dot(p, pose_matrix.T),
@ -793,7 +806,7 @@ class AddSquareSymmetries(SymmetriesOfSquare):
square = Square(**self.square_config)
square.flip(RIGHT)
square.shift(DOWN)
self.add_labels_and_dots(square)
self.add_randy_to_square(square, mode = "shruggie")
alt_square = square.copy()
equals = TexMobject("=")
equals.move_to(square)
@ -932,7 +945,7 @@ class AddCubeSymmetries(GroupOfCubeSymmetries):
CONFIG = {
"angle_axis_pairs" : [
(np.pi/2, RIGHT),
(np.pi/2, UP)
(np.pi/2, UP),
],
"cube_opacity" : 0.5,
"cube_colors" : [BLUE],
@ -945,7 +958,6 @@ class AddCubeSymmetries(GroupOfCubeSymmetries):
self.pose_matrix = self.get_pose_matrix()
cube = self.get_cube()
equation = cube1, plus, cube2, equals, cube3 = VGroup(
cube, TexMobject("+"),
cube.copy(), TexMobject("="),
@ -978,13 +990,14 @@ class AddCubeSymmetries(GroupOfCubeSymmetries):
self.play(Indicate(times))
self.dither()
for cube, (angle, axis) in zip([cube1, cube_copy, cube3], angle_axis_pairs):
self.rotate_cube(cube, angle, axis, add_arrows = False)
self.rotate_cube(
cube, -angle, axis, add_arrows = False,
rate_func = there_and_back,
run_time = 1.5
)
self.dither()
# def get_pose_matrix(self):
# return np.identity(3)
def rotate_cube(self, cube, angle, axis, add_arrows = True):
def rotate_cube(self, cube, angle, axis, add_arrows = True, **kwargs):
axis = np.dot(axis, self.pose_matrix.T)
anims = []
if add_arrows:
@ -1005,10 +1018,12 @@ class AddCubeSymmetries(GroupOfCubeSymmetries):
arrows.shift(-axis*cube.get_height()/2/np.linalg.norm(axis))
anims += map(ShowCreation, arrows)
anims.append(
Rotate(cube, axis = axis, angle = angle, in_place = True)
Rotate(
cube, axis = axis, angle = angle, in_place = True,
**kwargs
)
)
self.play(*anims, run_time = 1.5)
self.add(cube)
def get_composition_angle_and_axis(self):
return get_composite_rotation_angle_and_axis(
@ -1020,7 +1035,7 @@ class DihedralGroupStructure(SymmetriesOfSquare):
"dashed_line_config" : {
"dashed_segment_length" : 0.1
},
"filed_sum_scale_factor" : 0.45,
"filed_sum_scale_factor" : 0.4,
"num_rows" : 5,
}
def construct(self):
@ -1033,17 +1048,17 @@ class DihedralGroupStructure(SymmetriesOfSquare):
(np.pi, UP),
(np.pi, UP+LEFT),
]
pair_pairs = list(it.combinations(angle_axis_pairs, 2))
pair_pairs = list(it.product(*[angle_axis_pairs]*2))
random.shuffle(pair_pairs)
for pair_pair in pair_pairs[:4]:
sum_expression = self.demonstrate_sum(pair_pair)
self.file_away_sum(sum_expression)
for pair_pair in pair_pairs[4:]:
should_skip_animstions = self.skip_animations
should_skip_animations = self.skip_animations
self.skip_animations = True
sum_expression = self.demonstrate_sum(pair_pair)
self.file_away_sum(sum_expression)
self.skip_animations = should_skip_animstions
self.skip_animations = should_skip_animations
self.play(FadeIn(sum_expression))
self.dither(3)
@ -1057,17 +1072,21 @@ class DihedralGroupStructure(SymmetriesOfSquare):
prototype_square = Square(**self.square_config)
prototype_square.flip(RIGHT)
self.add_labels_and_dots(prototype_square)
self.add_randy_to_square(prototype_square)
# self.add_labels_and_dots(prototype_square)
prototype_square.scale(0.7)
expression = s1, plus, s2, equals, s3 = VGroup(
prototype_square, TexMobject("+"),
prototype_square.copy(), TexMobject("="),
prototype_square, TexMobject("+").scale(2),
prototype_square.copy(), TexMobject("=").scale(2),
prototype_square.copy()
)
final_expression = VGroup()
for square, (angle, axis) in zip([s1, s2, s3], angle_axis_pairs):
if np.argmax(np.abs(axis)) == 2: ##Axis is in z direction
if np.cos(angle) > 0.5:
square.action_illustration = VectorizedPoint()
elif np.argmax(np.abs(axis)) == 2: ##Axis is in z direction
square.action_illustration = self.get_rotation_arcs(
square, angle
)
@ -1083,19 +1102,27 @@ class DihedralGroupStructure(SymmetriesOfSquare):
"axis" : axis,
}
expression.arrange_submobjects()
expression.to_edge(RIGHT)
expression.scale_to_fit_width(SPACE_WIDTH+1)
expression.to_edge(RIGHT, buff = SMALL_BUFF)
for square in s1, s2, s3:
square.remove(square.action_illustration)
self.play(FadeIn(s1))
self.play(*map(ShowCreation, s1.action_illustration))
self.rotate_square(**s1.rotation_kwargs)
s1_copy = s1.copy()
self.play(
FadeIn(s2),
# FadeIn(s2),
s1_copy.move_to, s2,
Write(plus)
)
Transform(s2, s1_copy).update(1)
self.remove(s1_copy)
self.add(s2)
self.play(*map(ShowCreation, s2.action_illustration))
self.rotate_square(**s2.rotation_kwargs)
self.play(
Write(equals),
FadeIn(s3)
@ -1127,18 +1154,541 @@ class DihedralGroupStructure(SymmetriesOfSquare):
self.num_sum_expressions += 1
self.last_sum_expression = sum_expression
class ThisIsAVeryGeneralIdea(Scene):
def construct(self):
groups = TextMobject("Groups")
groups.to_edge(UP)
groups.highlight(BLUE)
examples = VGroup(*map(TextMobject, [
"Square matrices \\\\ \\small (Where $\\det(M) \\ne 0$)",
"Molecular \\\\ symmetry",
"Cryptography",
"Numbers",
]))
numbers = examples[-1]
examples.arrange_submobjects(buff = LARGE_BUFF)
examples.scale_to_fit_width(2*SPACE_WIDTH-1)
examples.move_to(UP)
lines = VGroup(*[
Line(groups.get_bottom(), ex.get_top(), buff = MED_SMALL_BUFF)
for ex in examples
])
lines.highlight(groups.get_color())
self.add(groups)
for example, line in zip(examples, lines):
self.play(
ShowCreation(line),
Write(example, run_time = 2)
)
self.dither()
self.play(
VGroup(*examples[:-1]).fade, 0.7,
VGroup(*lines[:-1]).fade, 0.7,
)
self.play(
numbers.scale, 1.2, numbers.get_corner(UP+RIGHT),
)
self.dither(2)
sub_categories = VGroup(*map(TextMobject, [
"Numbers \\\\ (Additive)",
"Numbers \\\\ (Multiplicative)",
]))
sub_categories.arrange_submobjects(RIGHT, buff = MED_LARGE_BUFF)
sub_categories.next_to(numbers, DOWN, 1.5*LARGE_BUFF)
sub_categories.to_edge(RIGHT)
sub_categories[0].highlight(ADDER_COLOR)
sub_categories[1].highlight(MULTIPLIER_COLOR)
sub_lines = VGroup(*[
Line(numbers.get_bottom(), sc.get_top(), buff = MED_SMALL_BUFF)
for sc in sub_categories
])
sub_lines.highlight(numbers.get_color())
self.play(*it.chain(
map(ShowCreation, sub_lines),
map(Write, sub_categories)
))
self.dither()
class NumbersAsActionsQ(TeacherStudentsScene):
def construct(self):
self.student_says(
"Numbers are actions?",
target_mode = "confused",
)
self.change_student_modes("pondering", "confused", "erm")
self.play(self.get_teacher().change_mode, "happy")
self.dither(3)
class AdditiveGroupOfReals(Scene):
CONFIG = {
"number_line_center" : UP,
"shadow_line_center" : DOWN,
"zero_color" : GREEN_B,
}
def construct(self):
self.add_number_line()
self.show_example_slides(3, -7)
self.write_group_of_slides()
self.show_example_slides(2, 6, -1, -3)
self.mark_zero()
self.show_example_slides_labeled(3, -2)
self.comment_on_zero_as_identity()
self.show_example_slides_labeled(
5.5, added_anims = [self.get_write_name_of_group_anim()]
)
self.show_example_additions((3, 2), (2, -5), (-4, 4))
def add_number_line(self):
number_line = NumberLine(
x_min = -2*SPACE_WIDTH,
x_max = 2*SPACE_WIDTH
)
number_line.shift(self.number_line_center)
shadow_line = NumberLine(color = GREY, stroke_width = 2)
shadow_line.shift(self.shadow_line_center)
for line in number_line, shadow_line:
line.add_numbers()
shadow_line.numbers.fade(0.25)
shadow_line.save_state()
shadow_line.highlight(BLACK)
shadow_line.move_to(number_line)
self.play(*map(Write, number_line), run_time = 1)
self.play(shadow_line.restore, Animation(number_line))
self.dither()
self.number_line = number_line
self.shadow_line = shadow_line
def show_example_slides(self, *nums):
for num in nums:
zero_point = self.number_line.number_to_point(0)
num_point = self.number_line.number_to_point(num)
arrow = Arrow(zero_point, num_point, buff = 0)
arrow.highlight(ADDER_COLOR)
arrow.shift(MED_LARGE_BUFF*UP)
self.play(ShowCreation(arrow))
self.play(
self.number_line.shift,
num_point - zero_point,
run_time = 2
)
self.play(FadeOut(arrow))
def write_group_of_slides(self):
title = TextMobject("Group of line symmetries")
title.to_edge(UP)
self.play(Write(title))
self.title = title
def mark_zero(self):
dot = Dot(
self.number_line.number_to_point(0),
color = self.zero_color
)
arrow = Arrow(dot, color = self.zero_color)
words = TextMobject("Follow zero")
words.next_to(arrow.get_start(), UP)
words.highlight(self.zero_color)
self.play(
ShowCreation(arrow),
DrawBorderThenFill(dot),
Write(words),
)
self.dither()
self.play(*map(FadeOut, [arrow, words]))
self.number_line.add(dot)
def show_example_slides_labeled(self, *nums, **kwargs):
for num in nums:
line = DashedLine(
self.number_line.number_to_point(num)+MED_LARGE_BUFF*UP,
self.shadow_line.number_to_point(num)+MED_LARGE_BUFF*DOWN,
)
vect = self.number_line.number_to_point(num) - \
self.number_line.number_to_point(0)
self.play(ShowCreation(line))
self.dither()
self.play(self.number_line.shift, vect, run_time = 2)
self.dither()
if "added_anims" in kwargs:
self.play(*kwargs["added_anims"])
self.dither()
self.play(
self.number_line.shift, -vect,
FadeOut(line)
)
def comment_on_zero_as_identity(self):
line = DashedLine(
self.number_line.number_to_point(0)+MED_LARGE_BUFF*UP,
self.shadow_line.number_to_point(0)+MED_LARGE_BUFF*DOWN,
)
words = TexMobject("0 \\leftrightarrow \\text{Do nothing}")
words.shift(line.get_top()+MED_SMALL_BUFF*UP - words[0].get_bottom())
self.play(
ShowCreation(line),
Write(words)
)
self.dither(2)
self.play(*map(FadeOut, [line, words]))
def get_write_name_of_group_anim(self):
new_title = TextMobject("Additive group of real numbers")
VGroup(*new_title[-len("realnumbers"):]).highlight(BLUE)
VGroup(*new_title[:len("Additive")]).highlight(ADDER_COLOR)
new_title.to_edge(UP)
return Transform(self.title, new_title)
def show_example_additions(self, *num_pairs):
for num_pair in num_pairs:
num_mobs = VGroup()
arrows = VGroup()
self.number_line.save_state()
for num in num_pair:
zero_point, num_point, arrow, num_mob = \
self.get_adder_mobs(num)
if len(num_mobs) > 0:
last_num_mob = num_mobs[0]
x = num_mob.get_center()[0]
if x < last_num_mob.get_right()[0] and x > last_num_mob.get_left()[0]:
num_mob.next_to(last_num_mob, RIGHT)
num_mobs.add(num_mob)
arrows.add(arrow)
self.play(
ShowCreation(arrow),
Write(num_mob, run_time = 1)
)
self.play(
self.number_line.shift,
num_point - zero_point
)
self.dither()
#Reset
self.play(
FadeOut(num_mobs),
FadeOut(self.number_line)
)
ApplyMethod(self.number_line.restore).update(1)
self.play(FadeIn(self.number_line))
#Sum arrow
num = sum(num_pair)
zero_point, sum_point, arrow, sum_mob = \
self.get_adder_mobs(sum(num_pair))
VGroup(arrow, sum_mob).shift(MED_LARGE_BUFF*UP)
arrows.add(arrow)
self.play(
ShowCreation(arrow),
Write(sum_mob, run_time = 1)
)
self.dither()
self.play(
self.number_line.shift,
num_point - zero_point,
run_time = 2
)
self.dither()
self.play(
self.number_line.restore,
*map(FadeOut, [arrows, sum_mob])
)
def get_adder_mobs(self, num):
zero_point = self.number_line.number_to_point(0)
num_point = self.number_line.number_to_point(num)
arrow = Arrow(zero_point, num_point, buff = 0)
arrow.highlight(ADDER_COLOR)
arrow.shift(MED_SMALL_BUFF*UP)
if num == 0:
arrow = DashedLine(UP, ORIGIN)
arrow.move_to(zero_point)
elif num < 0:
arrow.highlight(RED)
arrow.shift(SMALL_BUFF*UP)
sign = "+" if num >= 0 else ""
num_mob = TexMobject(sign + str(num))
num_mob.next_to(arrow, UP)
num_mob.highlight(arrow.get_color())
return zero_point, num_point, arrow, num_mob
class AdditiveGroupOfComplexNumbers(ComplexTransformationScene):
CONFIG = {
"x_min" : -2*int(SPACE_WIDTH),
"x_max" : 2*int(SPACE_WIDTH),
"y_min" : -2*SPACE_HEIGHT,
"y_max" : 2*SPACE_HEIGHT,
"example_points" : [
complex(3, 2),
complex(1, -3),
]
}
def construct(self):
self.add_plane()
self.show_vertical_slide()
self.show_example_point()
self.show_example_addition()
self.write_group_name()
self.show_some_random_slides()
def add_plane(self):
self.add_transformable_plane(animate = True)
zero_dot = Dot(
self.z_to_point(0),
color = ADDER_COLOR
)
self.play(ShowCreation(zero_dot))
self.plane.add(zero_dot)
self.dither()
def show_vertical_slide(self):
dots = VGroup(*[
Dot(self.z_to_point(complex(0, i)))
for i in range(1, 4)
])
dots.highlight(YELLOW)
labels = VGroup(*self.imag_labels[-3:])
arrow = Arrow(ORIGIN, dots[-1].get_center(), buff = 0)
arrow.highlight(ADDER_COLOR)
self.plane.save_state()
for dot, label in zip(dots, labels):
self.play(
Indicate(label),
ShowCreation(dot)
)
self.add_foreground_mobjects(dots)
self.dither()
self.play(ShowCreation(arrow))
self.play(
self.plane.shift, dots[-1].get_center(),
Animation(arrow),
run_time = 2
)
self.dither()
self.play(FadeOut(arrow))
self.play(
self.plane.shift, 6*DOWN,
run_time = 2,
)
self.play(self.plane.restore, run_time = 2)
self.foreground_mobjects.remove(dots)
self.play(FadeOut(dots))
def show_example_point(self):
z = self.example_points[0]
point = self.z_to_point(z)
dot = Dot(point, color = YELLOW)
arrow = Vector(point, buff = dot.radius)
arrow.highlight(dot.get_color())
label = TexMobject("%d + %di"%(z.real, z.imag))
label.next_to(point, UP)
label.highlight(dot.get_color())
label.add_background_rectangle()
real_arrow = Vector(self.z_to_point(z.real))
imag_arrow = Vector(self.z_to_point(z - z.real))
VGroup(real_arrow, imag_arrow).highlight(ADDER_COLOR)
self.play(
Write(label),
DrawBorderThenFill(dot)
)
self.dither()
self.play(ShowCreation(arrow))
self.add_foreground_mobjects(label, dot, arrow)
self.dither()
self.slide(z)
self.dither()
self.play(FadeOut(self.plane))
self.plane.restore()
self.plane.set_stroke(width = 0)
self.play(self.plane.restore)
self.play(ShowCreation(real_arrow))
self.add_foreground_mobjects(real_arrow)
self.slide(z.real)
self.dither()
self.play(ShowCreation(imag_arrow))
self.dither()
self.play(imag_arrow.shift, self.z_to_point(z.real))
self.add_foreground_mobjects(imag_arrow)
self.slide(z - z.real)
self.dither()
self.foreground_mobjects.remove(real_arrow)
self.foreground_mobjects.remove(imag_arrow)
self.play(*map(FadeOut, [real_arrow, imag_arrow, self.plane]))
self.plane.restore()
self.plane.set_stroke(0)
self.play(self.plane.restore)
self.z1 = z
self.arrow1 = arrow
self.dot1 = dot
self.label1 = label
def show_example_addition(self):
z1 = self.z1
arrow1 = self.arrow1
dot1 = self.dot1
label1 = self.label1
z2 = self.example_points[1]
point2 = self.z_to_point(z2)
dot2 = Dot(point2, color = TEAL)
arrow2 = Vector(
point2,
buff = dot2.radius,
color = dot2.get_color()
)
label2 = TexMobject(
"%d %di"%(z2.real, z2.imag)
)
label2.next_to(point2, UP+RIGHT)
label2.highlight(dot2.get_color())
label2.add_background_rectangle()
self.play(ShowCreation(arrow2))
self.play(
DrawBorderThenFill(dot2),
Write(label2)
)
self.add_foreground_mobjects(arrow2, dot2, label2)
self.dither()
self.slide(z1)
arrow2_copy = arrow2.copy()
self.play(arrow2_copy.shift, self.z_to_point(z1))
self.add_foreground_mobjects(arrow2_copy)
self.slide(z2)
self.play(FadeOut(arrow2_copy))
self.foreground_mobjects.remove(arrow2_copy)
self.dither()
##Break into components
real_arrow, imag_arrow = component_arrows = [
Vector(
self.z_to_point(z),
color = ADDER_COLOR
)
for z in [
z1.real+z2.real,
complex(0, z1.imag+z2.imag),
]
]
imag_arrow.shift(real_arrow.get_end())
plus = TexMobject("+").next_to(
real_arrow.get_center(), UP+RIGHT
)
plus.add_background_rectangle()
rp1, rp2, ip1, ip2 = label_parts = [
VGroup(label1[1][0].copy()),
VGroup(label2[1][0].copy()),
VGroup(*label1[1][2:]).copy(),
VGroup(*label2[1][1:]).copy(),
]
for part in label_parts:
part.generate_target()
rp1.target.next_to(plus, LEFT)
rp2.target.next_to(plus, RIGHT)
ip1.target.next_to(imag_arrow.get_center(), RIGHT)
ip1.target.shift(SMALL_BUFF*DOWN)
ip2.target.next_to(ip1.target, RIGHT)
real_background_rect = BackgroundRectangle(
VGroup(rp1.target, rp2.target)
)
imag_background_rect = BackgroundRectangle(
VGroup(ip1.target, ip2.target)
)
self.play(
ShowCreation(real_arrow),
ShowCreation(
real_background_rect,
rate_func = squish_rate_func(smooth, 0.75, 1),
),
Write(plus),
*map(MoveToTarget, [rp1, rp2])
)
self.dither()
self.play(
ShowCreation(imag_arrow),
ShowCreation(
imag_background_rect,
rate_func = squish_rate_func(smooth, 0.75, 1),
),
*map(MoveToTarget, [ip1, ip2])
)
self.dither(2)
to_remove = [
arrow1, dot1, label1,
arrow2, dot2, label2,
real_background_rect,
imag_background_rect,
plus,
] + label_parts + component_arrows
for mob in to_remove:
if mob in self.foreground_mobjects:
self.foreground_mobjects.remove(mob)
self.play(*map(FadeOut, to_remove))
self.play(self.plane.restore, run_time = 2)
self.dither()
def write_group_name(self):
title = TextMobject(
"Additive", "group of", "complex numbers"
)
title[0].highlight(ADDER_COLOR)
title[2].highlight(BLUE)
title.add_background_rectangle()
title.to_edge(UP, buff = MED_SMALL_BUFF)
self.play(Write(title))
self.add_foreground_mobjects(title)
self.dither()
def show_some_random_slides(self):
example_slides = [
complex(3),
complex(0, 2),
complex(-4, -1),
complex(-2, -1),
complex(4, 2),
]
for z in example_slides:
self.slide(z)
self.dither()
#########
def slide(self, z, *added_anims, **kwargs):
kwargs["run_time"] = kwargs.get("run_time", 2)
self.play(
ApplyMethod(
self.plane.shift, self.z_to_point(z),
**kwargs
),
*added_anims
)

View File

@ -325,6 +325,8 @@ def path_along_arc(arc_angle, axis = OUT):
"""
if abs(arc_angle) < STRAIGHT_PATH_THRESHOLD:
return straight_path
if np.linalg.norm(axis) == 0:
axis = OUT
unit_axis = axis/np.linalg.norm(axis)
def path(start_points, end_points, alpha):
vects = end_points - start_points

View File

@ -411,9 +411,11 @@ class Mobject(object):
return self
def restore(self):
if not hasattr(self, "saved_state"):
if not hasattr(self, "saved_state") or self.save_state is None:
raise Exception("Trying to restore without having saved")
self.__dict__.update(self.saved_state.__dict__)
self.align_data(self.saved_state)
for sm1, sm2 in zip(self.submobject_family(), self.saved_state.submobject_family()):
sm1.interpolate(sm1, sm2, 1)
return self
def apply_complex_function(self, function):
@ -658,7 +660,7 @@ class Mobject(object):
def interpolate(self, mobject1, mobject2,
alpha, path_func = straight_path):
"""
Turns target_mobject into an interpolation between mobject1
Turns self into an interpolation between mobject1
and mobject2.
"""
self.points = path_func(

View File

@ -6,7 +6,7 @@ from mobject.tex_mobject import TexMobject, TextMobject
from number_line import NumberPlane
from animation import Animation
from animation.transform import ApplyPointwiseFunction
from animation.simple_animations import Homotopy
from animation.simple_animations import Homotopy, ShowCreation
from scene import Scene
@ -23,10 +23,10 @@ class ComplexTransformationScene(Scene):
"y_min" : -SPACE_HEIGHT,
"y_max" : SPACE_HEIGHT,
"use_multicolored_plane" : False,
"vert_start_color" : MAROON_B,
"vert_end_color" : RED,
"horiz_start_color" : GREEN_B,
"horiz_end_color" : YELLOW,
"vert_start_color" : BLUE,
"vert_end_color" : BLUE,
"horiz_start_color" : BLUE,
"horiz_end_color" : BLUE,
"num_anchors_to_add_per_line" : 50,
"post_transformation_stroke_width" : None,
"default_apply_complex_function_kwargs" : {
@ -68,13 +68,13 @@ class ComplexTransformationScene(Scene):
TexMobject(str(x)).shift(
background.num_pair_to_point((x, 0))
)
for x in range(-int(self.x_max), int(self.x_max))
for x in range(-int(background.x_radius), int(background.x_radius))
])
imag_labels = VGroup(*[
TexMobject("%di"%y).shift(
background.num_pair_to_point((0, y))
)
for y in range(-int(self.y_max), int(self.y_max))
for y in range(-int(background.y_radius), int(background.y_radius))
if y != 0
])
for labels in real_labels, imag_labels:
@ -127,6 +127,7 @@ class ComplexTransformationScene(Scene):
)
def z_to_point(self, z):
z = complex(z)
return self.background.num_pair_to_point((z.real, z.imag))
def get_transformer(self, **kwargs):

View File

@ -158,11 +158,16 @@ class DashedLine(Line):
return self
def get_start(self):
return self[0].points[0]
if len(self) > 0:
return self[0].points[0]
else:
return self.start
def get_end(self):
return self[-1].points[-1]
if len(self) > 0:
return self[-1].points[-1]
else:
return self.end
class Arrow(Line):
@ -175,9 +180,9 @@ class Arrow(Line):
"preserve_tip_size_when_scaling" : True,
}
def __init__(self, *args, **kwargs):
points = map(self.pointify, args)
if len(args) == 1:
point = self.pointify(args[0])
args = (point+UP+LEFT, target)
args = (points[0]+UP+LEFT, points[0])
Line.__init__(self, *args, **kwargs)
self.add_tip()
@ -203,9 +208,18 @@ class Arrow(Line):
[tip_points[0], end, tip_points[1]],
mode = "corners"
)
self.set_points_as_corners(
[start, center_of_mass(tip_points)]
)
self.add(self.tip)
self.init_colors()
def get_end(self):
if hasattr(self, "tip"):
return self.tip.get_anchors()[1]
else:
return Line.get_end(self)
def get_tip(self):
return self.tip

View File

@ -21,7 +21,7 @@ class PartyHat(SVGMobject):
"fill_opacity" : 1,
"propogate_style_to_family" : True,
"frills_colors" : [MAROON_B, PURPLE],
"cone_color" : RED,
"cone_color" : GREEN,
"dots_colors" : [YELLOW],
}
NUM_FRILLS = 7

View File

@ -51,11 +51,18 @@ class ThreeDCamera(Camera):
def display_multiple_vectorized_mobjects(self, vmobjects):
def z_cmp(*vmobs):
if all([hasattr(vm, "part_of_three_d_mobject") for vm in vmobs]):
is_three_d = np.array([
hasattr(vm, "part_of_three_d_mobject")
for vm in vmobs
])
if sum(is_three_d) == 2:
cmp_vect = self.get_unit_normal_vect(vmobs[0])
return cmp(*[
vm.get_edge_center(IN)[2]
np.dot(vm.get_center(), cmp_vect)
for vm in vmobs
])
elif sum(is_three_d) == 1:
return 1 if is_three_d[0] else -1
else:
return 0
Camera.display_multiple_vectorized_mobjects(