Incremental WindingNumber progress

This commit is contained in:
Sridhar Ramesh
2018-01-17 23:17:42 -08:00
parent 04c8477ea0
commit 2f1454bed4

View File

@ -24,11 +24,15 @@ from topics.complex_numbers import *
from scene import Scene
from scene.reconfigurable_scene import ReconfigurableScene
from scene.zoomed_scene import *
from camera import Camera
from camera import *
from mobject.svg_mobject import *
from mobject.tex_mobject import *
from topics.graph_scene import *
# TODO/WARNING: There's a lot of refactoring and cleanup to be done in this code,
# (and it will be done, but first I'll figure out what I'm doing with all this...)
# -SR
class DualScene(Scene):
CONFIG = {
"num_needed_anchor_points" : 10
@ -294,8 +298,10 @@ class SecondSqrtScene(FirstSqrtScene, ReconfigurableScene):
graph_origin = newOrigin)
self.solveEquation()
# TODO: Perhaps have pulses fade out and in at ends of line, instead of jarringly
# TODO: Perhaps have bullets (pulses) fade out and in at ends of line, instead of jarringly
# popping out and in?
#
# TODO: Perhaps have bullets change color corresponding to a function of their coordinates?
class LinePulser(ContinualAnimation):
def __init__(self, line, bullet_template, num_bullets, pulse_time, **kwargs):
self.line = line
@ -311,7 +317,6 @@ class LinePulser(ContinualAnimation):
for i in range(self.num_bullets):
self.bullets[i].move_to(interpolate(start, end,
np.true_divide((i + alpha),(self.num_bullets))))
self.bullets[i].shift((0, 0, 1)) # Temporary hack for z-buffer fidgetiness
class LoopSplitScene(Scene):
@ -321,26 +326,37 @@ class LoopSplitScene(Scene):
return [VGroup(line, *anim.bullets), anim]
def construct(self):
num_plane = NumberPlane(color = LIGHT_GREY, stroke_width = 1)
num_plane.axes.set_stroke(color = WHITE, width = 2)
num_plane.fade()
self.add(num_plane)
scale_factor = 2
shift_term = 0
# Original loop
tl = UP + LEFT
tm = UP
tr = UP + RIGHT
mr = RIGHT
br = DOWN + RIGHT
bm = DOWN
bl = DOWN + LEFT
lm = LEFT
tl = scale_factor * (UP + LEFT) + shift_term
tm = scale_factor * UP + shift_term
tr = scale_factor * (UP + RIGHT) + shift_term
mr = scale_factor * RIGHT + shift_term
br = scale_factor * (DOWN + RIGHT) + shift_term
bm = scale_factor * DOWN + shift_term
bl = scale_factor * (DOWN + LEFT) + shift_term
lm = scale_factor * LEFT + shift_term
loop_color = BLUE
default_bullet = PiCreature(color = RED)
default_bullet.scale(0.15)
modified_bullet = PiCreature(color = PINK)
modified_bullet.scale(0.15)
def SGroup(*args):
return VGroup(*[arg[0] for arg in args])
top_line = self.PulsedLine(tl, tr, default_bullet, color = BLUE)
right_line = self.PulsedLine(tr, br, default_bullet, color = BLUE)
right_line = self.PulsedLine(tr, br, modified_bullet, color = BLUE)
bottom_line = self.PulsedLine(br, bl, default_bullet, color = BLUE)
left_line = self.PulsedLine(bl, tl, default_bullet, color = BLUE)
line_list = [top_line, right_line, bottom_line, left_line]
@ -355,15 +371,15 @@ class LoopSplitScene(Scene):
self.remove(*split_line)
mid_line_left = self.PulsedLine(tm, bm, default_bullet, color = loop_color)
mid_line_right = self.PulsedLine(bm, tm, default_bullet, color = loop_color)
mid_line_right = self.PulsedLine(bm, tm, modified_bullet, color = loop_color)
self.add(*mid_line_left)
self.add(*mid_line_right)
top_line_left_half = self.PulsedLine(tl, tm, default_bullet, 2, 1, color = loop_color)
top_line_right_half = self.PulsedLine(tm, tr, default_bullet, 2, 1, color = loop_color)
top_line_right_half = self.PulsedLine(tm, tr, modified_bullet, 2, 1, color = loop_color)
bottom_line_left_half = self.PulsedLine(bm, bl, default_bullet, 2, 1, color = loop_color)
bottom_line_right_half = self.PulsedLine(br, bm, default_bullet, 2, 1, color = loop_color)
bottom_line_right_half = self.PulsedLine(br, bm, modified_bullet, 2, 1, color = loop_color)
self.remove(*top_line)
self.add(*top_line_left_half)
@ -377,17 +393,17 @@ class LoopSplitScene(Scene):
right_open_loop = SGroup(top_line_right_half, right_line, bottom_line_right_half)
right_closed_loop = VGroup(right_open_loop, mid_line_right[0])
self.play(
ApplyMethod(left_closed_loop.shift, LEFT),
ApplyMethod(right_closed_loop.shift, RIGHT)
)
# self.play(
# ApplyMethod(left_closed_loop.shift, LEFT),
# ApplyMethod(right_closed_loop.shift, RIGHT)
# )
self.wait()
self.play(
ApplyMethod(left_open_loop.shift, LEFT),
ApplyMethod(right_open_loop.shift, RIGHT)
)
# self.play(
# ApplyMethod(left_open_loop.shift, LEFT),
# ApplyMethod(right_open_loop.shift, RIGHT)
# )
self.wait()
@ -404,13 +420,23 @@ class LoopSplitScene(Scene):
self.remove(mid_line_left[1], mid_line_right[1])
# Brings loop back together; keep in sync with motions which bring loop apart above
self.play(
ApplyMethod(left_open_loop.shift, 2 * RIGHT),
ApplyMethod(right_open_loop.shift, 2 * LEFT)
)
# self.play(
# ApplyMethod(left_open_loop.shift, 2 * RIGHT),
# ApplyMethod(right_open_loop.shift, 2 * LEFT)
# )
self.wait()
class LoopSplitSceneMapped(LoopSplitScene):
def setup(self):
left_camera = Camera(**self.camera_config)
right_camera = MappingCamera(
mapping_func = lambda (x, y, z) : complex_to_R3(((complex(x,y) + 3)**1.1) - 3),
**self.camera_config)
split_screen_camera = SplitScreenCamera(left_camera, right_camera, **self.camera_config)
self.camera = split_screen_camera
class NumberLineScene(Scene):
def construct(self):
num_line = NumberLine()
@ -441,16 +467,28 @@ class NumberLineScene(Scene):
self.wait()
def color_func(alpha):
alpha = alpha % 1
colors = ["#FF0000", ORANGE, YELLOW, "#00FF00", "#0000FF", "#FF00FF"]
num_colors = len(colors)
beta = (alpha % (1.0/num_colors)) * num_colors
start_index = int(np.floor(num_colors * alpha)) % num_colors
end_index = (start_index + 1) % num_colors
return interpolate_color(colors[start_index], colors[end_index], beta)
class ArrowCircleTest(Scene):
def construct(self):
circle_radius = 3
circle = Circle(radius = circle_radius)
circle = Circle(radius = circle_radius, color = WHITE)
self.add(circle)
base_arrow = Arrow(circle_radius * 0.7 * RIGHT, circle_radius * 1.3 * RIGHT)
def rev_rotate(x, revs):
return x.rotate(revs * 2 * np.pi)
x.rotate(revs * 2 * np.pi)
x.set_color(color_func(revs))
return x
num_arrows = 8 * 3
arrows = [rev_rotate(base_arrow.copy(), (np.true_divide(i, num_arrows))) for i in range(num_arrows)]
@ -471,9 +509,11 @@ class FuncRotater(Animation):
def update_mobject(self, alpha):
Animation.update_mobject(self, alpha)
angle_revs = self.rotate_func(alpha)
self.mobject.rotate(
self.rotate_func(alpha) * 2 * np.pi,
angle_revs * 2 * np.pi,
)
self.mobject.set_color(color_func(angle_revs))
# Will want to have arrow colors change to match direction as well
class TestRotater(Scene):
@ -502,7 +542,7 @@ class OdometerScene(Scene):
run_time = self.run_time,
rate_func = None)
def Vect2dToRevAngle(x, y):
def point_to_rev((x, y)):
return np.true_divide(np.arctan2(y, x), 2 * np.pi)
# Returns the value with the same fractional component as x, closest to m
@ -512,18 +552,165 @@ def resit_near(x, m):
frac_diff -= 1
return m + frac_diff
# Perhaps use modulus of (uniform) continuity instead of num_check_points, calculating
# TODO?: Perhaps use modulus of (uniform) continuity instead of num_checkpoints, calculating
# latter as needed from former?
def winding_func(func, start, end, num_check_points):
check_points = [None for i in range(num_check_points)]
check_points[0] = func(0)
step_size = np.true_divide(end - start, num_check_points)
for i in range(num_check_points - 1):
def make_alpha_winder(func, start, end, num_checkpoints):
check_points = [None for i in range(num_checkpoints)]
check_points[0] = func(start)
step_size = np.true_divide(end - start, num_checkpoints)
for i in range(num_checkpoints - 1):
check_points[i + 1] = \
resit_near(
func(start + (i + 1) * step_size),
check_points[i])
return lambda x : resit_near(func(x), check_points[int((x - start)/step_size)])
def return_func(alpha):
index = clamp(0, num_checkpoints - 1, int(alpha * num_checkpoints))
x = interpolate(start, end, alpha)
return resit_near(func(x), check_points[index])
return return_func
def split_interval((a, b)):
mid = (a + b)/2.0
return ((a, mid), (mid, b))
class RectangleData():
def __init__(self, x_interval, y_interval):
self.rect = (x_interval, y_interval)
def get_top_left(self):
return np.array((self.rect[0][0], self.rect[1][0]))
def get_top_right(self):
return np.array((self.rect[0][1], self.rect[1][0]))
def get_bottom_right(self):
return np.array((self.rect[0][1], self.rect[1][1]))
def get_bottom_left(self):
return np.array((self.rect[0][0], self.rect[1][1]))
def get_top(self):
return (self.get_top_left(), self.get_top_right())
def get_right(self):
return (self.get_top_right(), self.get_bottom_right())
def get_bottom(self):
return (self.get_bottom_right(), self.get_bottom_left())
def get_left(self):
return (self.get_bottom_left(), self.get_top_left())
def splits_on_dim(self, dim):
x_interval = self.rect[0]
y_interval = self.rect[1]
# TODO: Can refactor the following; will do later
if dim == 0:
return_data = [RectangleData(new_interval, y_interval) for new_interval in split_interval(x_interval)]
elif dim == 1:
return_data = [RectangleData(x_interval, new_interval) for new_interval in split_interval(y_interval)]
else:
print "Error!"
return tuple(return_data)
def complex_to_pair(c):
return (c.real, c.imag)
class iterative_2d_test(Scene):
CONFIG = {
"func" : lambda (x, y) : complex_to_pair(complex(x, y)**2 - complex(1, 2)**2),
"initial_lower_x" : -5.1,
"initial_upper_x" : 5.1,
"initial_lower_y" : -3.1,
"initial_upper_y" : 3.1,
"num_iterations" : 20,
"num_checkpoints" : 10
}
def construct(self):
num_plane = NumberPlane()
num_plane.fade()
self.add(num_plane)
num_display = DecimalNumber(0, color = ORANGE)
num_display.move_to(UP + RIGHT)
lower_x = self.initial_lower_x
upper_x = self.initial_upper_x
lower_y = self.initial_lower_y
upper_y = self.initial_upper_y
x_interval = (lower_x, upper_x)
y_interval = (lower_y, upper_y)
rect = RectangleData(x_interval, y_interval)
rev_func = lambda p : point_to_rev(self.func(p))
dim_to_split = 0 # 0 for x, 1 for y
def draw_line_return_wind(start, end, start_wind):
alpha_winder = make_alpha_winder(rev_func, start, end, self.num_checkpoints)
a0 = alpha_winder(0)
rebased_winder = lambda alpha: alpha_winder(alpha) - a0 + start_wind
line = Line(num_plane.coords_to_point(*start), num_plane.coords_to_point(*end),
stroke_width = 5,
color = "#FF0000")
self.play(
ShowCreation(line),
#ChangingDecimal(num_display, rebased_winder)
)
line.set_color("#00FF00")
return rebased_winder(1)
for i in range(self.num_iterations):
(explore_rect, alt_rect) = rect.splits_on_dim(dim_to_split)
top_wind = draw_line_return_wind(
explore_rect.get_top_left(),
explore_rect.get_top_right(),
0
)
print(len(self.mobjects))
right_wind = draw_line_return_wind(
explore_rect.get_top_right(),
explore_rect.get_bottom_right(),
top_wind
)
print(len(self.mobjects))
bottom_wind = draw_line_return_wind(
explore_rect.get_bottom_right(),
explore_rect.get_bottom_left(),
right_wind
)
print(len(self.mobjects))
left_wind = draw_line_return_wind(
explore_rect.get_bottom_left(),
explore_rect.get_top_left(),
bottom_wind
)
print(len(self.mobjects))
total_wind = round(left_wind)
if total_wind == 0:
rect = alt_rect
else:
rect = explore_rect
dim_to_split = 1 - dim_to_split
self.wait()
class EquationSolver2d(ZoomedScene):
#TODO
@ -535,4 +722,5 @@ class EquationSolver2d(ZoomedScene):
"initial_guess_dimensions" : (0, 0),
"num_iterations" : 10,
"iteration_at_which_to_start_zoom" : None
}
}