Added example scenes for graphing and using CoordinateSystems

This commit is contained in:
Grant Sanderson
2021-02-07 17:31:31 -08:00
parent f984443ed5
commit 12e8506841

View File

@ -67,48 +67,6 @@ class OpeningManimExample(Scene):
self.wait(2)
class InteractiveDevlopment(Scene):
def construct(self):
circle = Circle()
circle.set_fill(BLUE, opacity=0.5)
circle.set_stroke(BLUE_E, width=4)
square = Square()
self.play(ShowCreation(square))
self.wait()
# This opens an iPython termnial where you can keep writing
# lines as if they were part of this construct method
self.embed()
# Try copying and pasting some of the lines below into
# the interactive shell
self.play(ReplacementTransform(square, circle))
self.wait()
self.play(circle.stretch, 4, 0)
self.play(Rotate(circle, 90 * DEGREES))
self.play(circle.shift, 2 * RIGHT, circle.scale, 0.25)
text = Text("""
In general, using the interactive shell
is very helpful when developing new scenes
""")
self.play(Write(text))
# In the interactive shell, you can just type
# play, add, remove, clear, wait, save_state and restore,
# instead of self.play, self.add, self.remove, etc.
# To interact with the window, type touch(). You can then
# scroll in the window, or zoom by holding down 'z' while scrolling,
# and change camera perspective by holding down 'd' while moving
# the mouse. Press 'r' to reset to the standard camera position.
# Press 'q' to stop interacting with the window and go back to
# typing new commands into the shell.
# In principle you can customize a scene
always(circle.move_to, self.mouse_point)
class AnimatingMethods(Scene):
def construct(self):
grid = Tex(r"\pi").get_grid(10, 10, height=4)
@ -121,7 +79,10 @@ class AnimatingMethods(Scene):
# to the left, but the following line animates that motion.
self.play(grid.shift, 2 * LEFT)
# The same applies for any method, including those setting colors.
self.play(grid.set_color, YELLOW)
self.wait()
self.play(grid.set_submobject_colors_by_gradient, BLUE, GREEN)
self.wait()
self.play(grid.set_height, TAU - MED_SMALL_BUFF)
self.wait()
@ -361,6 +322,166 @@ class UpdatersExample(Scene):
self.wait(4 * PI)
class GraphExample(Scene):
def construct(self):
axes = Axes((-3, 10), (-1, 8))
axes.add_coordinate_labels()
self.play(Write(axes, lag_ratio=0.01, run_time=1))
# Axes.get_graph will return the graph of a function
sin_graph = axes.get_graph(
lambda x: 2 * math.sin(x),
color=BLUE,
)
# By default, it draws it so as to somewhat smoothly interpolate
# between sampled points (x, f(x)). If the graph is meant to have
# a corner, though, you can set use_smoothing to False
relu_graph = axes.get_graph(
lambda x: max(x, 0),
use_smoothing=False,
color=YELLOW,
)
# For discontinuous functions, you can specify the point of
# discontinuity so that it does not try to draw over the gap.
step_graph = axes.get_graph(
lambda x: 2.0 if x > 3 else 1.0,
discontinuities=[3],
color=GREEN,
)
# Axes.get_graph_label takes in either a string or a mobject.
# If it's a string, it treats it as a LaTeX expression. By default
# it places the label next to the graph near the right side, and
# has it match the color of the graph
sin_label = axes.get_graph_label(sin_graph, "\\sin(x)")
relu_label = axes.get_graph_label(relu_graph, Text("ReLU"))
step_label = axes.get_graph_label(step_graph, Text("Step"), x=4)
self.play(
ShowCreation(sin_graph),
FadeIn(sin_label, RIGHT),
)
self.wait(2)
self.play(
ReplacementTransform(sin_graph, relu_graph),
FadeTransform(sin_label, relu_label),
)
self.wait()
self.play(
ReplacementTransform(relu_graph, step_graph),
FadeTransform(relu_label, step_label),
)
self.wait()
parabola = axes.get_graph(lambda x: 0.25 * x**2)
parabola.set_stroke(BLUE)
self.play(
FadeOut(step_graph),
FadeOut(step_label),
ShowCreation(parabola)
)
self.wait()
# You can use axes.input_to_graph_point, abbreviated
# to axes.i2gp, to find a particular point on a graph
dot = Dot(color=RED)
dot.move_to(axes.i2gp(2, parabola))
self.play(FadeIn(dot, scale=0.5))
# A value tracker lets us animate a parameter, usually
# with the intent of having other mobjects update based
# on the parameter
x_tracker = ValueTracker(2)
f_always(
dot.move_to,
lambda: axes.i2gp(x_tracker.get_value(), parabola)
)
self.play(x_tracker.set_value, 4, run_time=3)
self.play(x_tracker.set_value, -2, run_time=3)
self.wait()
class CoordinateSystemExample(Scene):
def construct(self):
axes = Axes(
# x-axis ranges from -1 to 10, with a default step size of 1
x_range=(-1, 10),
# y-axis ranges from -2 to 10 with a step size of 0.5
y_range=(-2, 2, 0.5),
# The axes will be stretched so as to match the specified
# height and width
height=6,
width=10,
# Axes is made of two NumberLine mobjects. You can specify
# their configuration with axis_config
axis_config={
"stroke_color": GREY_A,
"stroke_width": 2,
},
# Alternatively, you can specify configuration for just one
# of them, like this.
y_axis_config={
"include_tip": False,
}
)
# Keyword arguments of add_coordinate_labels can be used to
# configure the DecimalNumber mobjects which it creates and
# adds to the axes
axes.add_coordinate_labels(
font_size=20,
num_decimal_places=1,
)
self.add(axes)
# Axes descends from the CoordinateSystem class, meaning
# you can call call axes.coords_to_point, abbreviated to
# axes.c2p, to associate a set of coordinates with a point,
# like so:
dot = Dot(color=RED)
dot.move_to(axes.c2p(0, 0))
self.play(FadeIn(dot, scale=0.5))
self.play(dot.move_to, axes.c2p(3, 2))
self.wait()
self.play(dot.move_to, axes.c2p(5, 0.5))
self.wait()
# Similarly, you can call axes.point_to_coords, or axes.p2c
# print(axes.p2c(dot.get_center()))
# We can draw lines from the axes to better mark the coordinates
# of a given point.
# Here, the always_redraw command means that on each new frame
# the lines will be redrawn
h_line = always_redraw(lambda: axes.get_h_line(dot.get_left()))
v_line = always_redraw(lambda: axes.get_v_line(dot.get_bottom()))
self.play(
ShowCreation(h_line),
ShowCreation(v_line),
)
self.play(dot.move_to, axes.c2p(3, -2))
self.wait()
self.play(dot.move_to, axes.c2p(1, 1))
self.wait()
# If we tie the dot to a particular set of coordinates, notice
# that as we move the axes around it respects the coordinate
# system defined by them.
f_always(dot.move_to, lambda: axes.c2p(1, 1))
self.play(
axes.scale, 0.75,
axes.to_corner, UL,
run_time=2,
)
self.wait()
self.play(FadeOut(VGroup(axes, dot, h_line, v_line)))
# Other coordinate systems you can play around with include
# ThreeDAxes, NumberPlane, and ComplexPlane.
class SurfaceExample(Scene):
CONFIG = {
"camera_class": ThreeDCamera,
@ -452,6 +573,52 @@ class SurfaceExample(Scene):
self.wait()
class InteractiveDevlopment(Scene):
def construct(self):
circle = Circle()
circle.set_fill(BLUE, opacity=0.5)
circle.set_stroke(BLUE_E, width=4)
square = Square()
self.play(ShowCreation(square))
self.wait()
# This opens an iPython termnial where you can keep writing
# lines as if they were part of this construct method.
# In particular, 'square', 'circle' and 'self' will all be
# part of the local namespace in that terminal.
self.embed()
# Try copying and pasting some of the lines below into
# the interactive shell
self.play(ReplacementTransform(square, circle))
self.wait()
self.play(circle.stretch, 4, 0)
self.play(Rotate(circle, 90 * DEGREES))
self.play(circle.shift, 2 * RIGHT, circle.scale, 0.25)
text = Text("""
In general, using the interactive shell
is very helpful when developing new scenes
""")
self.play(Write(text))
# In the interactive shell, you can just type
# play, add, remove, clear, wait, save_state and restore,
# instead of self.play, self.add, self.remove, etc.
# To interact with the window, type touch(). You can then
# scroll in the window, or zoom by holding down 'z' while scrolling,
# and change camera perspective by holding down 'd' while moving
# the mouse. Press 'r' to reset to the standard camera position.
# Press 'q' to stop interacting with the window and go back to
# typing new commands into the shell.
# In principle you can customize a scene to be responsive to
# mouse and keyboard interactions
always(circle.move_to, self.mouse_point)
class ControlsExample(Scene):
def setup(self):
self.textbox = Textbox()