1
0
mirror of https://github.com/ipfs/kubo.git synced 2025-08-02 09:12:44 +08:00
Files
kubo/unixfs/hamt/hamt.go
Steven Allen f9d935b984 rename import of go-ipld-format from node/format to ipld
License: MIT
Signed-off-by: Steven Allen <steven@stebalien.com>
2018-01-29 11:55:34 -08:00

559 lines
13 KiB
Go

// Package hamt implements a Hash Array Mapped Trie over ipfs merkledag nodes.
// It is implemented mostly as described in the wikipedia article on HAMTs,
// however the table size is variable (usually 256 in our usages) as opposed to
// 32 as suggested in the article. The hash function used is currently
// Murmur3, but this value is configurable (the datastructure reports which
// hash function its using).
//
// The one algorithmic change we implement that is not mentioned in the
// wikipedia article is the collapsing of empty shards.
// Given the following tree: ( '[' = shards, '{' = values )
// [ 'A' ] -> [ 'B' ] -> { "ABC" }
// | L-> { "ABD" }
// L-> { "ASDF" }
// If we simply removed "ABC", we would end up with a tree where shard 'B' only
// has a single child. This causes two issues, the first, is that now we have
// an extra lookup required to get to "ABD". The second issue is that now we
// have a tree that contains only "ABD", but is not the same tree that we would
// get by simply inserting "ABD" into a new tree. To address this, we always
// check for empty shard nodes upon deletion and prune them to maintain a
// consistent tree, independent of insertion order.
package hamt
import (
"context"
"fmt"
"math"
"math/big"
"os"
dag "github.com/ipfs/go-ipfs/merkledag"
format "github.com/ipfs/go-ipfs/unixfs"
upb "github.com/ipfs/go-ipfs/unixfs/pb"
proto "gx/ipfs/QmZ4Qi3GaRbjcx28Sme5eMH7RQjGkt8wHxt2a65oLaeFEV/gogo-protobuf/proto"
cid "gx/ipfs/QmcZfnkapfECQGcLZaf9B79NRg7cRa9EnZh4LSbkCzwNvY/go-cid"
ipld "gx/ipfs/Qme5bWv7wtjUNGsK2BNGVUFPKiuxWrsqrtvYwCLRw8YFES/go-ipld-format"
"gx/ipfs/QmfJHywXQu98UeZtGJBQrPAR6AtmDjjbe3qjTo9piXHPnx/murmur3"
)
const (
HashMurmur3 uint64 = 0x22
)
type HamtShard struct {
nd *dag.ProtoNode
bitfield *big.Int
children []child
tableSize int
tableSizeLg2 int
prefix *cid.Prefix
hashFunc uint64
prefixPadStr string
maxpadlen int
dserv ipld.DAGService
}
// child can either be another shard, or a leaf node value
type child interface {
Link() (*ipld.Link, error)
Label() string
}
// NewHamtShard creates a new, empty HAMT shard with the given size.
func NewHamtShard(dserv ipld.DAGService, size int) (*HamtShard, error) {
ds, err := makeHamtShard(dserv, size)
if err != nil {
return nil, err
}
ds.bitfield = big.NewInt(0)
ds.nd = new(dag.ProtoNode)
ds.hashFunc = HashMurmur3
return ds, nil
}
func makeHamtShard(ds ipld.DAGService, size int) (*HamtShard, error) {
lg2s := int(math.Log2(float64(size)))
if 1<<uint(lg2s) != size {
return nil, fmt.Errorf("hamt size should be a power of two")
}
maxpadding := fmt.Sprintf("%X", size-1)
return &HamtShard{
tableSizeLg2: lg2s,
prefixPadStr: fmt.Sprintf("%%0%dX", len(maxpadding)),
maxpadlen: len(maxpadding),
tableSize: size,
dserv: ds,
}, nil
}
// NewHamtFromDag creates new a HAMT shard from the given DAG.
func NewHamtFromDag(dserv ipld.DAGService, nd ipld.Node) (*HamtShard, error) {
pbnd, ok := nd.(*dag.ProtoNode)
if !ok {
return nil, dag.ErrLinkNotFound
}
pbd, err := format.FromBytes(pbnd.Data())
if err != nil {
return nil, err
}
if pbd.GetType() != upb.Data_HAMTShard {
return nil, fmt.Errorf("node was not a dir shard")
}
if pbd.GetHashType() != HashMurmur3 {
return nil, fmt.Errorf("only murmur3 supported as hash function")
}
ds, err := makeHamtShard(dserv, int(pbd.GetFanout()))
if err != nil {
return nil, err
}
ds.nd = pbnd.Copy().(*dag.ProtoNode)
ds.children = make([]child, len(pbnd.Links()))
ds.bitfield = new(big.Int).SetBytes(pbd.GetData())
ds.hashFunc = pbd.GetHashType()
ds.prefix = &ds.nd.Prefix
return ds, nil
}
// SetPrefix sets the CID Prefix
func (ds *HamtShard) SetPrefix(prefix *cid.Prefix) {
ds.prefix = prefix
}
// Prefix gets the CID Prefix, may be nil if unset
func (ds *HamtShard) Prefix() *cid.Prefix {
return ds.prefix
}
// Node serializes the HAMT structure into a merkledag node with unixfs formatting
func (ds *HamtShard) Node() (ipld.Node, error) {
out := new(dag.ProtoNode)
out.SetPrefix(ds.prefix)
// TODO: optimized 'for each set bit'
for i := 0; i < ds.tableSize; i++ {
if ds.bitfield.Bit(i) == 0 {
continue
}
cindex := ds.indexForBitPos(i)
ch := ds.children[cindex]
if ch != nil {
clnk, err := ch.Link()
if err != nil {
return nil, err
}
err = out.AddRawLink(ds.linkNamePrefix(i)+ch.Label(), clnk)
if err != nil {
return nil, err
}
} else {
// child unloaded, just copy in link with updated name
lnk := ds.nd.Links()[cindex]
label := lnk.Name[ds.maxpadlen:]
err := out.AddRawLink(ds.linkNamePrefix(i)+label, lnk)
if err != nil {
return nil, err
}
}
}
typ := upb.Data_HAMTShard
data, err := proto.Marshal(&upb.Data{
Type: &typ,
Fanout: proto.Uint64(uint64(ds.tableSize)),
HashType: proto.Uint64(HashMurmur3),
Data: ds.bitfield.Bytes(),
})
if err != nil {
return nil, err
}
out.SetData(data)
err = ds.dserv.Add(context.TODO(), out)
if err != nil {
return nil, err
}
return out, nil
}
type shardValue struct {
key string
val *ipld.Link
}
// Link returns a link to this node
func (sv *shardValue) Link() (*ipld.Link, error) {
return sv.val, nil
}
func (sv *shardValue) Label() string {
return sv.key
}
func hash(val []byte) []byte {
h := murmur3.New64()
h.Write(val)
return h.Sum(nil)
}
// Label for HamtShards is the empty string, this is used to differentiate them from
// value entries
func (ds *HamtShard) Label() string {
return ""
}
// Set sets 'name' = nd in the HAMT
func (ds *HamtShard) Set(ctx context.Context, name string, nd ipld.Node) error {
hv := &hashBits{b: hash([]byte(name))}
err := ds.dserv.Add(ctx, nd)
if err != nil {
return err
}
lnk, err := ipld.MakeLink(nd)
if err != nil {
return err
}
lnk.Name = ds.linkNamePrefix(0) + name
return ds.modifyValue(ctx, hv, name, lnk)
}
// Remove deletes the named entry if it exists, this operation is idempotent.
func (ds *HamtShard) Remove(ctx context.Context, name string) error {
hv := &hashBits{b: hash([]byte(name))}
return ds.modifyValue(ctx, hv, name, nil)
}
// Find searches for a child node by 'name' within this hamt
func (ds *HamtShard) Find(ctx context.Context, name string) (*ipld.Link, error) {
hv := &hashBits{b: hash([]byte(name))}
var out *ipld.Link
err := ds.getValue(ctx, hv, name, func(sv *shardValue) error {
out = sv.val
return nil
})
if err != nil {
return nil, err
}
return out, nil
}
// getChild returns the i'th child of this shard. If it is cached in the
// children array, it will return it from there. Otherwise, it loads the child
// node from disk.
func (ds *HamtShard) getChild(ctx context.Context, i int) (child, error) {
if i >= len(ds.children) || i < 0 {
return nil, fmt.Errorf("invalid index passed to getChild (likely corrupt bitfield)")
}
if len(ds.children) != len(ds.nd.Links()) {
return nil, fmt.Errorf("inconsistent lengths between children array and Links array")
}
c := ds.children[i]
if c != nil {
return c, nil
}
return ds.loadChild(ctx, i)
}
// loadChild reads the i'th child node of this shard from disk and returns it
// as a 'child' interface
func (ds *HamtShard) loadChild(ctx context.Context, i int) (child, error) {
lnk := ds.nd.Links()[i]
if len(lnk.Name) < ds.maxpadlen {
return nil, fmt.Errorf("invalid link name '%s'", lnk.Name)
}
nd, err := lnk.GetNode(ctx, ds.dserv)
if err != nil {
return nil, err
}
var c child
if len(lnk.Name) == ds.maxpadlen {
pbnd, ok := nd.(*dag.ProtoNode)
if !ok {
return nil, dag.ErrNotProtobuf
}
pbd, err := format.FromBytes(pbnd.Data())
if err != nil {
return nil, err
}
if pbd.GetType() != format.THAMTShard {
return nil, fmt.Errorf("HAMT entries must have non-zero length name")
}
cds, err := NewHamtFromDag(ds.dserv, nd)
if err != nil {
return nil, err
}
c = cds
} else {
lnk2 := *lnk
c = &shardValue{
key: lnk.Name[ds.maxpadlen:],
val: &lnk2,
}
}
ds.children[i] = c
return c, nil
}
func (ds *HamtShard) setChild(i int, c child) {
ds.children[i] = c
}
// Link returns a merklelink to this shard node
func (ds *HamtShard) Link() (*ipld.Link, error) {
nd, err := ds.Node()
if err != nil {
return nil, err
}
err = ds.dserv.Add(context.TODO(), nd)
if err != nil {
return nil, err
}
return ipld.MakeLink(nd)
}
func (ds *HamtShard) insertChild(idx int, key string, lnk *ipld.Link) error {
if lnk == nil {
return os.ErrNotExist
}
i := ds.indexForBitPos(idx)
ds.bitfield.SetBit(ds.bitfield, idx, 1)
lnk.Name = ds.linkNamePrefix(idx) + key
sv := &shardValue{
key: key,
val: lnk,
}
ds.children = append(ds.children[:i], append([]child{sv}, ds.children[i:]...)...)
ds.nd.SetLinks(append(ds.nd.Links()[:i], append([]*ipld.Link{nil}, ds.nd.Links()[i:]...)...))
return nil
}
func (ds *HamtShard) rmChild(i int) error {
if i < 0 || i >= len(ds.children) || i >= len(ds.nd.Links()) {
return fmt.Errorf("hamt: attempted to remove child with out of range index")
}
copy(ds.children[i:], ds.children[i+1:])
ds.children = ds.children[:len(ds.children)-1]
copy(ds.nd.Links()[i:], ds.nd.Links()[i+1:])
ds.nd.SetLinks(ds.nd.Links()[:len(ds.nd.Links())-1])
return nil
}
func (ds *HamtShard) getValue(ctx context.Context, hv *hashBits, key string, cb func(*shardValue) error) error {
idx := hv.Next(ds.tableSizeLg2)
if ds.bitfield.Bit(int(idx)) == 1 {
cindex := ds.indexForBitPos(idx)
child, err := ds.getChild(ctx, cindex)
if err != nil {
return err
}
switch child := child.(type) {
case *HamtShard:
return child.getValue(ctx, hv, key, cb)
case *shardValue:
if child.key == key {
return cb(child)
}
}
}
return os.ErrNotExist
}
func (ds *HamtShard) EnumLinks(ctx context.Context) ([]*ipld.Link, error) {
var links []*ipld.Link
err := ds.ForEachLink(ctx, func(l *ipld.Link) error {
links = append(links, l)
return nil
})
return links, err
}
func (ds *HamtShard) ForEachLink(ctx context.Context, f func(*ipld.Link) error) error {
return ds.walkTrie(ctx, func(sv *shardValue) error {
lnk := sv.val
lnk.Name = sv.key
return f(lnk)
})
}
func (ds *HamtShard) walkTrie(ctx context.Context, cb func(*shardValue) error) error {
for i := 0; i < ds.tableSize; i++ {
if ds.bitfield.Bit(i) == 0 {
continue
}
idx := ds.indexForBitPos(i)
// NOTE: an optimized version could simply iterate over each
// element in the 'children' array.
c, err := ds.getChild(ctx, idx)
if err != nil {
return err
}
switch c := c.(type) {
case *shardValue:
err := cb(c)
if err != nil {
return err
}
case *HamtShard:
err := c.walkTrie(ctx, cb)
if err != nil {
return err
}
default:
return fmt.Errorf("unexpected child type: %#v", c)
}
}
return nil
}
func (ds *HamtShard) modifyValue(ctx context.Context, hv *hashBits, key string, val *ipld.Link) error {
idx := hv.Next(ds.tableSizeLg2)
if ds.bitfield.Bit(idx) != 1 {
return ds.insertChild(idx, key, val)
}
cindex := ds.indexForBitPos(idx)
child, err := ds.getChild(ctx, cindex)
if err != nil {
return err
}
switch child := child.(type) {
case *HamtShard:
err := child.modifyValue(ctx, hv, key, val)
if err != nil {
return err
}
if val == nil {
switch len(child.children) {
case 0:
// empty sub-shard, prune it
// Note: this shouldnt normally ever happen
// in the event of another implementation creates flawed
// structures, this will help to normalize them.
ds.bitfield.SetBit(ds.bitfield, idx, 0)
return ds.rmChild(cindex)
case 1:
nchild, ok := child.children[0].(*shardValue)
if ok {
// sub-shard with a single value element, collapse it
ds.setChild(cindex, nchild)
}
return nil
}
}
return nil
case *shardValue:
if child.key == key {
// value modification
if val == nil {
ds.bitfield.SetBit(ds.bitfield, idx, 0)
return ds.rmChild(cindex)
}
child.val = val
return nil
}
if val == nil {
return os.ErrNotExist
}
// replace value with another shard, one level deeper
ns, err := NewHamtShard(ds.dserv, ds.tableSize)
if err != nil {
return err
}
ns.prefix = ds.prefix
chhv := &hashBits{
b: hash([]byte(child.key)),
consumed: hv.consumed,
}
err = ns.modifyValue(ctx, hv, key, val)
if err != nil {
return err
}
err = ns.modifyValue(ctx, chhv, child.key, child.val)
if err != nil {
return err
}
ds.setChild(cindex, ns)
return nil
default:
return fmt.Errorf("unexpected type for child: %#v", child)
}
}
// indexForBitPos returns the index within the collapsed array corresponding to
// the given bit in the bitset. The collapsed array contains only one entry
// per bit set in the bitfield, and this function is used to map the indices.
func (ds *HamtShard) indexForBitPos(bp int) int {
// TODO: an optimization could reuse the same 'mask' here and change the size
// as needed. This isnt yet done as the bitset package doesnt make it easy
// to do.
// make a bitmask (all bits set) 'bp' bits long
mask := new(big.Int).Sub(new(big.Int).Exp(big.NewInt(2), big.NewInt(int64(bp)), nil), big.NewInt(1))
mask.And(mask, ds.bitfield)
return popCount(mask)
}
// linkNamePrefix takes in the bitfield index of an entry and returns its hex prefix
func (ds *HamtShard) linkNamePrefix(idx int) string {
return fmt.Sprintf(ds.prefixPadStr, idx)
}