package bootstrap import ( "context" "errors" "io" "math/rand" "sync" "sync/atomic" "time" logging "github.com/ipfs/go-log" "github.com/jbenet/goprocess" goprocessctx "github.com/jbenet/goprocess/context" periodicproc "github.com/jbenet/goprocess/periodic" "github.com/libp2p/go-libp2p/core/host" "github.com/libp2p/go-libp2p/core/network" "github.com/libp2p/go-libp2p/core/peer" "github.com/libp2p/go-libp2p/core/peerstore" "github.com/libp2p/go-libp2p/core/routing" ) var log = logging.Logger("bootstrap") // ErrNotEnoughBootstrapPeers signals that we do not have enough bootstrap // peers to bootstrap correctly. var ErrNotEnoughBootstrapPeers = errors.New("not enough bootstrap peers to bootstrap") // BootstrapConfig specifies parameters used in an IpfsNode's network // bootstrapping process. type BootstrapConfig struct { // MinPeerThreshold governs whether to bootstrap more connections. If the // node has less open connections than this number, it will open connections // to the bootstrap nodes. From there, the routing system should be able // to use the connections to the bootstrap nodes to connect to even more // peers. Routing systems like the IpfsDHT do so in their own Bootstrap // process, which issues random queries to find more peers. MinPeerThreshold int // Period governs the periodic interval at which the node will // attempt to bootstrap. The bootstrap process is not very expensive, so // this threshold can afford to be small (<=30s). Period time.Duration // ConnectionTimeout determines how long to wait for a bootstrap // connection attempt before cancelling it. ConnectionTimeout time.Duration // BootstrapPeers is a function that returns a set of bootstrap peers // for the bootstrap process to use. This makes it possible for clients // to control the peers the process uses at any moment. BootstrapPeers func() []peer.AddrInfo // BackupBootstrapInterval governs the periodic interval at which the node will // attempt to save connected nodes to use as temporary bootstrap peers. BackupBootstrapInterval time.Duration // MaxBackupBootstrapSize controls the maximum number of peers we're saving // as backup bootstrap peers. MaxBackupBootstrapSize int saveBackupBootstrapPeers func(context.Context, []peer.AddrInfo) loadBackupBootstrapPeers func(context.Context) []peer.AddrInfo } // DefaultBootstrapConfig specifies default sane parameters for bootstrapping. var DefaultBootstrapConfig = BootstrapConfig{ MinPeerThreshold: 4, Period: 30 * time.Second, ConnectionTimeout: (30 * time.Second) / 3, // Perod / 3 BackupBootstrapInterval: 1 * time.Hour, MaxBackupBootstrapSize: 20, } // BootstrapConfigWithPeers creates a default BootstrapConfig configured with // the specified peers, and optional functions to load and save backup peers. func BootstrapConfigWithPeers(pis []peer.AddrInfo, options ...func(*BootstrapConfig)) BootstrapConfig { cfg := DefaultBootstrapConfig cfg.BootstrapPeers = func() []peer.AddrInfo { return pis } for _, opt := range options { opt(&cfg) } return cfg } // WithBackupPeers configures functions to load and save backup bootstrap peers. func WithBackupPeers(load func(context.Context) []peer.AddrInfo, save func(context.Context, []peer.AddrInfo)) func(*BootstrapConfig) { if save == nil && load != nil || save != nil && load == nil { panic("both load and save backup bootstrap peers functions must be defined") } return func(cfg *BootstrapConfig) { cfg.loadBackupBootstrapPeers = load cfg.saveBackupBootstrapPeers = save } } // BackupPeers returns the load and save backup peers functions. func (cfg *BootstrapConfig) BackupPeers() (func(context.Context) []peer.AddrInfo, func(context.Context, []peer.AddrInfo)) { return cfg.loadBackupBootstrapPeers, cfg.saveBackupBootstrapPeers } // SetBackupPeers sets the load and save backup peers functions. func (cfg *BootstrapConfig) SetBackupPeers(load func(context.Context) []peer.AddrInfo, save func(context.Context, []peer.AddrInfo)) { opt := WithBackupPeers(load, save) opt(cfg) } // Bootstrap kicks off IpfsNode bootstrapping. This function will periodically // check the number of open connections and -- if there are too few -- initiate // connections to well-known bootstrap peers. It also kicks off subsystem // bootstrapping (i.e. routing). func Bootstrap(id peer.ID, host host.Host, rt routing.Routing, cfg BootstrapConfig) (io.Closer, error) { // make a signal to wait for one bootstrap round to complete. doneWithRound := make(chan struct{}) if len(cfg.BootstrapPeers()) == 0 { // We *need* to bootstrap but we have no bootstrap peers // configured *at all*, inform the user. log.Warn("no bootstrap nodes configured: go-ipfs may have difficulty connecting to the network") } // the periodic bootstrap function -- the connection supervisor periodic := func(worker goprocess.Process) { ctx := goprocessctx.OnClosingContext(worker) if err := bootstrapRound(ctx, host, cfg); err != nil { log.Debugf("%s bootstrap error: %s", id, err) } // Exit the first call (triggered independently by `proc.Go`, not `Tick`) // only after being done with the *single* Routing.Bootstrap call. Following // periodic calls (`Tick`) will not block on this. <-doneWithRound } // kick off the node's periodic bootstrapping proc := periodicproc.Tick(cfg.Period, periodic) proc.Go(periodic) // run one right now. // kick off Routing.Bootstrap if rt != nil { ctx := goprocessctx.OnClosingContext(proc) if err := rt.Bootstrap(ctx); err != nil { proc.Close() return nil, err } } doneWithRound <- struct{}{} close(doneWithRound) // it no longer blocks periodic // If loadBackupBootstrapPeers is not nil then saveBackupBootstrapPeers // must also not be nil. if cfg.loadBackupBootstrapPeers != nil { startSavePeersAsTemporaryBootstrapProc(cfg, host, proc) } return proc, nil } // Aside of the main bootstrap process we also run a secondary one that saves // connected peers as a backup measure if we can't connect to the official // bootstrap ones. These peers will serve as *temporary* bootstrap nodes. func startSavePeersAsTemporaryBootstrapProc(cfg BootstrapConfig, host host.Host, bootstrapProc goprocess.Process) { savePeersFn := func(worker goprocess.Process) { ctx := goprocessctx.OnClosingContext(worker) if err := saveConnectedPeersAsTemporaryBootstrap(ctx, host, cfg); err != nil { log.Debugf("saveConnectedPeersAsTemporaryBootstrap error: %s", err) } } savePeersProc := periodicproc.Tick(cfg.BackupBootstrapInterval, savePeersFn) // When the main bootstrap process ends also terminate the 'save connected // peers' ones. Coupling the two seems the easiest way to handle this backup // process without additional complexity. go func() { <-bootstrapProc.Closing() savePeersProc.Close() }() // Run the first round now (after the first bootstrap process has finished) // as the SavePeersPeriod can be much longer than bootstrap. savePeersProc.Go(savePeersFn) } func saveConnectedPeersAsTemporaryBootstrap(ctx context.Context, host host.Host, cfg BootstrapConfig) error { // Randomize the list of connected peers, we don't prioritize anyone. connectedPeers := randomizeList(host.Network().Peers()) bootstrapPeers := cfg.BootstrapPeers() backupPeers := make([]peer.AddrInfo, 0, cfg.MaxBackupBootstrapSize) foundPeers := make(map[peer.ID]struct{}, cfg.MaxBackupBootstrapSize+len(bootstrapPeers)) // Don't record bootstrap peers for _, b := range bootstrapPeers { foundPeers[b.ID] = struct{}{} } // Choose peers to save and filter out the ones that are already bootstrap nodes. for _, p := range connectedPeers { if _, found := foundPeers[p]; found { continue } foundPeers[p] = struct{}{} backupPeers = append(backupPeers, peer.AddrInfo{ ID: p, Addrs: host.Network().Peerstore().Addrs(p), }) if len(backupPeers) >= cfg.MaxBackupBootstrapSize { break } } // If we didn't reach the target number use previously stored connected peers. if len(backupPeers) < cfg.MaxBackupBootstrapSize { oldSavedPeers := cfg.loadBackupBootstrapPeers(ctx) log.Debugf("missing %d peers to reach backup bootstrap target of %d, trying from previous list of %d saved peers", cfg.MaxBackupBootstrapSize-len(backupPeers), cfg.MaxBackupBootstrapSize, len(oldSavedPeers)) // Add some of the old saved peers. Ensure we don't duplicate them. for _, p := range oldSavedPeers { if _, found := foundPeers[p.ID]; found { continue } foundPeers[p.ID] = struct{}{} backupPeers = append(backupPeers, p) if len(backupPeers) >= cfg.MaxBackupBootstrapSize { break } } } cfg.saveBackupBootstrapPeers(ctx, backupPeers) log.Debugf("saved %d peers (of %d target) as bootstrap backup in the config", len(backupPeers), cfg.MaxBackupBootstrapSize) return nil } // Connect to as many peers needed to reach the BootstrapConfig.MinPeerThreshold. // Peers can be original bootstrap or temporary ones (drawn from a list of // persisted previously connected peers). func bootstrapRound(ctx context.Context, host host.Host, cfg BootstrapConfig) error { ctx, cancel := context.WithTimeout(ctx, cfg.ConnectionTimeout) defer cancel() id := host.ID() // get bootstrap peers from config. retrieving them here makes // sure we remain observant of changes to client configuration. peers := cfg.BootstrapPeers() // determine how many bootstrap connections to open connected := host.Network().Peers() if len(connected) >= cfg.MinPeerThreshold { log.Debugf("%s core bootstrap skipped -- connected to %d (> %d) nodes", id, len(connected), cfg.MinPeerThreshold) return nil } numToDial := cfg.MinPeerThreshold - len(connected) // numToDial > 0 if len(peers) > 0 { numToDial -= int(peersConnect(ctx, host, peers, numToDial, true)) if numToDial <= 0 { return nil } } if cfg.loadBackupBootstrapPeers == nil { log.Debugf("not enough bootstrap peers to fill the remaining target of %d connections", numToDial) return ErrNotEnoughBootstrapPeers } log.Debugf("not enough bootstrap peers to fill the remaining target of %d connections, trying backup list", numToDial) tempBootstrapPeers := cfg.loadBackupBootstrapPeers(ctx) if len(tempBootstrapPeers) > 0 { numToDial -= int(peersConnect(ctx, host, tempBootstrapPeers, numToDial, false)) if numToDial <= 0 { return nil } } log.Debugf("tried both original bootstrap peers and temporary ones but still missing target of %d connections", numToDial) return ErrNotEnoughBootstrapPeers } // Attempt to make `needed` connections from the `availablePeers` list. Mark // peers as either `permanent` or temporary when adding them to the Peerstore. // Return the number of connections completed. We eagerly over-connect in parallel, // so we might connect to more than needed. // (We spawn as many routines and attempt connections as the number of availablePeers, // but this list comes from restricted sets of original or temporary bootstrap // nodes which will keep it under a sane value.) func peersConnect(ctx context.Context, ph host.Host, availablePeers []peer.AddrInfo, needed int, permanent bool) uint64 { peers := randomizeList(availablePeers) // Monitor the number of connections and stop if we reach the target. var connected uint64 ctx, cancel := context.WithCancel(ctx) defer cancel() go func() { for { select { case <-ctx.Done(): return case <-time.After(1 * time.Second): if int(atomic.LoadUint64(&connected)) >= needed { cancel() return } } } }() var wg sync.WaitGroup for _, p := range peers { // performed asynchronously because when performed synchronously, if // one `Connect` call hangs, subsequent calls are more likely to // fail/abort due to an expiring context. // Also, performed asynchronously for dial speed. if int(atomic.LoadUint64(&connected)) >= needed { cancel() break } wg.Add(1) go func(p peer.AddrInfo) { defer wg.Done() // Skip addresses belonging to a peer we're already connected to. // (Not a guarantee but a best-effort policy.) if ph.Network().Connectedness(p.ID) == network.Connected { return } log.Debugf("%s bootstrapping to %s", ph.ID(), p.ID) if err := ph.Connect(ctx, p); err != nil { if ctx.Err() != context.Canceled { log.Debugf("failed to bootstrap with %v: %s", p.ID, err) } return } if permanent { // We're connecting to an original bootstrap peer, mark it as // a permanent address (Connect will register it as TempAddrTTL). ph.Peerstore().AddAddrs(p.ID, p.Addrs, peerstore.PermanentAddrTTL) } log.Infof("bootstrapped with %v", p.ID) atomic.AddUint64(&connected, 1) }(p) } wg.Wait() return connected } func randomizeList[T any](in []T) []T { out := make([]T, len(in)) for i, val := range rand.Perm(len(in)) { out[i] = in[val] } return out }