package alerting import ( "testing" "github.com/grafana/grafana/pkg/services/alerting/alertstates" "github.com/grafana/grafana/pkg/tsdb" . "github.com/smartystreets/goconvey/convey" ) func TestAlertingExecutor(t *testing.T) { Convey("Test alert execution", t, func() { executor := &ExecutorImpl{} Convey("single time serie", func() { Convey("Show return ok since avg is above 2", func() { rule := &AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "sum"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Ok) }) Convey("Show return critical since below 2", func() { rule := &AlertRule{CritLevel: 10, CritOperator: "<", Aggregator: "sum"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Critical) }) Convey("Show return critical since sum is above 10", func() { rule := &AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "sum"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{9, 0}, {9, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Critical) }) Convey("Show return ok since avg is below 10", func() { rule := &AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "avg"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{9, 0}, {9, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Ok) }) Convey("Show return ok since min is below 10", func() { rule := &AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "min"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{11, 0}, {9, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Ok) }) Convey("Show return ok since max is above 10", func() { rule := &AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "max"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{1, 0}, {11, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Critical) }) }) Convey("muliple time series", func() { Convey("both are ok", func() { rule := &AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "sum"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Ok) }) Convey("first serie is good, second is critical", func() { rule := &AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "sum"} timeSeries := []*tsdb.TimeSeries{ tsdb.NewTimeSeries("test1", [][2]float64{{2, 0}}), tsdb.NewTimeSeries("test1", [][2]float64{{11, 0}}), } result := executor.evaluateRule(rule, timeSeries) So(result.State, ShouldEqual, alertstates.Critical) }) }) }) }