Files
ManimML/manim_ml/neural_network/connective_layers.py
2022-04-02 19:20:30 -04:00

102 lines
3.8 KiB
Python

"""
Layers that describe the connections between user layers.
"""
from manim import *
from manim_ml.neural_network.layers import NeuralNetworkLayer
from abc import ABC, abstractmethod
class ConnectiveLayer(NeuralNetworkLayer):
"""Forward pass animation for a given pair of layers"""
@abstractmethod
def __init__(self, input_layer, output_layer):
super(NeuralNetworkLayer, self).__init__()
self.input_layer = input_layer
self.output_layer = output_layer
@abstractmethod
def make_forward_pass_animation(self):
pass
class FeedForwardToFeedForward(ConnectiveLayer):
"""Layer for connecting FeedForward layer to FeedForwardLayer"""
def __init__(self, input_layer, output_layer, passing_flash=True,
dot_radius=0.05, animation_dot_color=RED, edge_color=WHITE,
edge_width=0.5):
super().__init__(input_layer, output_layer)
self.passing_flash = passing_flash
self.edge_color = edge_color
self.dot_radius = dot_radius
self.animation_dot_color = animation_dot_color
self.edge_width = edge_width
self.edges = self.construct_edges()
self.add(self.edges)
def construct_edges(self):
# Go through each node in the two layers and make a connecting line
edges = []
for node_i in self.input_layer.node_group:
for node_j in self.output_layer.node_group:
line = Line(node_i.get_center(), node_j.get_center(),
color=self.edge_color, stroke_width=self.edge_width)
edges.append(line)
edges = Group(*edges)
return edges
def make_forward_pass_animation(self, run_time=1):
"""Animation for passing information from one FeedForwardLayer to the next"""
path_animations = []
dots = []
for edge in self.edges:
dot = Dot(color=self.animation_dot_color, fill_opacity=1.0, radius=self.dot_radius)
# Handle layering
dot.set_z_index(1)
# Add to dots group
dots.append(dot)
# Make the animation
if self.passing_flash:
print("passing flash")
anim = ShowPassingFlash(edge.copy().set_color(self.animation_dot_color), time_width=0.2, run_time=3)
else:
anim = MoveAlongPath(dot, edge, run_time=run_time, rate_function=sigmoid)
path_animations.append(anim)
if not self.passing_flash:
dots = Group(*dots)
self.add(dots)
path_animations = AnimationGroup(*path_animations)
return path_animations
class ImageToFeedForward(ConnectiveLayer):
"""Image Layer to FeedForward layer"""
def __init__(self, input_layer, output_layer, animation_dot_color=RED,
dot_radius=0.05):
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
# Input assumed to be ImageLayer
# Output assumed to be FeedForwardLayer
super().__init__(input_layer, output_layer)
def make_forward_pass_animation(self):
"""Makes dots diverge from the given location and move to the feed forward nodes decoder"""
animations = []
image_mobject = self.input_layer.image_mobject
# Move the dots to the centers of each of the nodes in the FeedForwardLayer
image_location = image_mobject.get_center()
for node in self.output_layer.node_group:
new_dot = Dot(image_location, radius=self.dot_radius, color=self.animation_dot_color)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
animation_group = AnimationGroup(*animations)
return animation_group