Files
ManimML/tests/test_neural_network.py
2023-01-01 23:24:59 -05:00

235 lines
6.1 KiB
Python

from cv2 import exp
from manim import *
from manim_ml.neural_network.layers.embedding import EmbeddingLayer
from manim_ml.neural_network.layers.embedding_to_feed_forward import (
EmbeddingToFeedForward,
)
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.feed_forward_to_embedding import (
FeedForwardToEmbedding,
)
from manim_ml.neural_network.layers.feed_forward_to_feed_forward import (
FeedForwardToFeedForward,
)
from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.neural_network import (
NeuralNetwork,
FeedForwardNeuralNetwork,
)
from PIL import Image
import numpy as np
config.pixel_height = 720
config.pixel_width = 1280
config.frame_height = 6.0
config.frame_width = 6.0
"""
Unit Tests
"""
def assert_classes_match(all_layers, expected_classes):
assert len(list(all_layers)) == 5
for index, layer in enumerate(all_layers):
expected_class = expected_classes[index]
assert isinstance(
layer, expected_class
), f"Wrong layer class {layer.__class__} expected {expected_class}"
def test_embedding_layer():
embedding_layer = EmbeddingLayer()
neural_network = NeuralNetwork(
[FeedForwardLayer(5), FeedForwardLayer(3), embedding_layer]
)
expected_classes = [
FeedForwardLayer,
FeedForwardToFeedForward,
FeedForwardLayer,
FeedForwardToEmbedding,
EmbeddingLayer,
]
assert_classes_match(neural_network.all_layers, expected_classes)
def test_remove_layer():
embedding_layer = EmbeddingLayer()
neural_network = NeuralNetwork(
[FeedForwardLayer(5), FeedForwardLayer(3), embedding_layer]
)
expected_classes = [
FeedForwardLayer,
FeedForwardToFeedForward,
FeedForwardLayer,
FeedForwardToEmbedding,
EmbeddingLayer,
]
assert_classes_match(neural_network.all_layers, expected_classes)
print("before removal")
print(list(neural_network.all_layers))
neural_network.remove_layer(embedding_layer)
print("after removal")
print(list(neural_network.all_layers))
expected_classes = [
FeedForwardLayer,
FeedForwardToFeedForward,
FeedForwardLayer,
]
print(list(neural_network.all_layers))
assert_classes_match(neural_network.all_layers, expected_classes)
class FeedForwardNeuralNetworkScene(Scene):
def construct(self):
nn = FeedForwardNeuralNetwork([3, 5, 3])
self.play(Create(nn))
self.play(Wait(3))
class NeuralNetworkScene(Scene):
"""Test Scene for the Neural Network"""
def construct(self):
# Make the Layer object
layers = [FeedForwardLayer(3), FeedForwardLayer(5), FeedForwardLayer(3)]
nn = NeuralNetwork(layers)
nn.move_to(ORIGIN)
# Make Animation
self.add(nn)
# self.play(Create(nn))
forward_propagation_animation = nn.make_forward_pass_animation(
run_time=5, passing_flash=True
)
self.play(forward_propagation_animation)
class GrayscaleImageNeuralNetworkScene(Scene):
def construct(self):
image = Image.open("images/image.jpeg")
numpy_image = np.asarray(image)
# Make nn
layers = [
FeedForwardLayer(3),
FeedForwardLayer(5),
FeedForwardLayer(3),
FeedForwardLayer(6),
ImageLayer(numpy_image, height=1.4),
]
nn = NeuralNetwork(layers)
nn.scale(1.3)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
self.play(nn.make_forward_pass_animation(run_time=5))
self.play(nn.make_forward_pass_animation(run_time=5))
class ImageNeuralNetworkScene(Scene):
def construct(self):
image = Image.open("../assets/gan/real_image.jpg")
numpy_image = np.asarray(image)
# Make nn
layers = [
FeedForwardLayer(3),
FeedForwardLayer(5),
FeedForwardLayer(3),
FeedForwardLayer(6),
ImageLayer(numpy_image, height=1.4),
]
nn = NeuralNetwork(layers)
nn.scale(1.3)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
self.play(nn.make_forward_pass_animation(run_time=5))
self.play(nn.make_forward_pass_animation(run_time=5))
class RecursiveNNScene(Scene):
def construct(self):
nn = NeuralNetwork(
[
NeuralNetwork([FeedForwardLayer(3), FeedForwardLayer(2)]),
NeuralNetwork([FeedForwardLayer(2), FeedForwardLayer(3)]),
]
)
self.play(Create(nn))
class LayerInsertionScene(Scene):
def construct(self):
pass
class LayerRemovalScene(Scene):
def construct(self):
image = Image.open("images/image.jpeg")
numpy_image = np.asarray(image)
layer = FeedForwardLayer(5)
layers = [
ImageLayer(numpy_image, height=1.4),
FeedForwardLayer(3),
layer,
FeedForwardLayer(3),
FeedForwardLayer(6),
]
nn = NeuralNetwork(layers)
self.play(Create(nn))
remove_animation = nn.remove_layer(layer)
print("before remove")
self.play(remove_animation)
print(nn)
print("after remove")
class LayerInsertionScene(Scene):
def construct(self):
image = Image.open("images/image.jpeg")
numpy_image = np.asarray(image)
layers = [
ImageLayer(numpy_image, height=1.4),
FeedForwardLayer(3),
FeedForwardLayer(3),
FeedForwardLayer(6),
]
nn = NeuralNetwork(layers)
self.play(Create(nn))
layer = FeedForwardLayer(5)
insert_animation = nn.insert_layer(layer, 4)
self.play(insert_animation)
print(nn)
print("after remove")
if __name__ == "__main__":
"""Render all scenes"""
# Feed Forward Neural Network
ffnn_scene = FeedForwardNeuralNetworkScene()
ffnn_scene.render()
# Neural Network
nn_scene = NeuralNetworkScene()
nn_scene.render()