mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-05-21 12:37:01 +08:00
73 lines
2.3 KiB
Python
73 lines
2.3 KiB
Python
"""Variational Autoencoder Manim Visualizations
|
|
|
|
In this module I define Manim visualizations for Variational Autoencoders
|
|
and Traditional Autoencoders.
|
|
|
|
"""
|
|
from manim import *
|
|
import numpy as np
|
|
from PIL import Image
|
|
from manim_ml.neural_network.layers import FeedForwardLayer, EmbeddingLayer, ImageLayer
|
|
from manim_ml.neural_network.neural_network import NeuralNetwork
|
|
|
|
|
|
class VariationalAutoencoder(VGroup):
|
|
"""Variational Autoencoder Manim Visualization"""
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_nodes_per_layer=[5, 3],
|
|
decoder_nodes_per_layer=[3, 5],
|
|
point_color=BLUE,
|
|
dot_radius=0.05,
|
|
ellipse_stroke_width=1.0,
|
|
layer_spacing=0.5,
|
|
):
|
|
super(VGroup, self).__init__()
|
|
self.encoder_nodes_per_layer = encoder_nodes_per_layer
|
|
self.decoder_nodes_per_layer = decoder_nodes_per_layer
|
|
self.point_color = point_color
|
|
self.dot_radius = dot_radius
|
|
self.layer_spacing = layer_spacing
|
|
self.ellipse_stroke_width = ellipse_stroke_width
|
|
# Make the VMobjects
|
|
self.neural_network, self.embedding_layer = self._construct_neural_network()
|
|
|
|
def _construct_neural_network(self):
|
|
"""Makes the VAE encoder, embedding layer, and decoder"""
|
|
embedding_layer = EmbeddingLayer()
|
|
|
|
neural_network = NeuralNetwork(
|
|
[
|
|
FeedForwardLayer(5),
|
|
FeedForwardLayer(3),
|
|
embedding_layer,
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(5),
|
|
]
|
|
)
|
|
|
|
return neural_network, embedding_layer
|
|
|
|
@override_animation(Create)
|
|
def _create_vae(self):
|
|
return Create(self.neural_network)
|
|
|
|
def make_triplet_forward_pass(self, triplet):
|
|
pass
|
|
|
|
def make_image_forward_pass(self, input_image, output_image, run_time=1.5):
|
|
"""Override forward pass animation specific to a VAE"""
|
|
# Make a wrapper NN with images
|
|
wrapper_neural_network = NeuralNetwork(
|
|
[ImageLayer(input_image), self.neural_network, ImageLayer(output_image)]
|
|
)
|
|
# Make animation
|
|
animation_group = AnimationGroup(
|
|
Create(wrapper_neural_network),
|
|
wrapper_neural_network.make_forward_pass_animation(),
|
|
lag_ratio=1.0,
|
|
)
|
|
|
|
return animation_group
|