mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-05-21 04:26:43 +08:00
365 lines
14 KiB
Python
365 lines
14 KiB
Python
"""
|
|
Module for visualizing decision trees in Manim.
|
|
It parses a decision tree classifier from sklearn.
|
|
|
|
TODO return a map from nodes to split animation for BFS tree expansion
|
|
TODO reimplement the decision 2D decision tree surface drawing.
|
|
"""
|
|
from manim import *
|
|
from manim_ml.decision_tree.classification_areas import (
|
|
compute_decision_areas,
|
|
merge_overlapping_polygons,
|
|
)
|
|
import manim_ml.decision_tree.helpers as helpers
|
|
from manim_ml.one_to_one_sync import OneToOneSync
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
class LeafNode(Group):
|
|
"""Leaf node in tree"""
|
|
|
|
def __init__(
|
|
self, class_index, display_type="image", class_image_paths=[], class_colors=[]
|
|
):
|
|
super().__init__()
|
|
self.display_type = display_type
|
|
self.class_image_paths = class_image_paths
|
|
self.class_colors = class_colors
|
|
assert self.display_type in ["image", "text"]
|
|
if self.display_type == "image":
|
|
self._construct_image_node(class_index)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def _construct_image_node(self, class_index):
|
|
"""Make an image node"""
|
|
# Get image
|
|
image_path = self.class_image_paths[class_index]
|
|
pil_image = Image.open(image_path)
|
|
node = ImageMobject(pil_image)
|
|
node.scale(1.5)
|
|
rectangle = Rectangle(
|
|
width=node.width + 0.05,
|
|
height=node.height + 0.05,
|
|
color=self.class_colors[class_index],
|
|
stroke_width=6,
|
|
)
|
|
rectangle.move_to(node.get_center())
|
|
rectangle.shift([-0.02, 0.02, 0])
|
|
self.add(rectangle)
|
|
self.add(node)
|
|
|
|
class SplitNode(VGroup):
|
|
"""Node for splitting decision in tree"""
|
|
|
|
def __init__(self, feature, threshold):
|
|
super().__init__()
|
|
node_text = f"{feature}\n<= {threshold:.2f} cm"
|
|
# Draw decision text
|
|
decision_text = Text(node_text, color=WHITE)
|
|
# Draw the surrounding box
|
|
bounding_box = SurroundingRectangle(decision_text, buff=0.3, color=WHITE)
|
|
self.add(bounding_box)
|
|
self.add(decision_text)
|
|
|
|
class DecisionTreeDiagram(Group):
|
|
"""Decision Tree Diagram Class for Manim"""
|
|
|
|
def __init__(
|
|
self,
|
|
sklearn_tree,
|
|
feature_names=None,
|
|
class_names=None,
|
|
class_images_paths=None,
|
|
class_colors=[RED, GREEN, BLUE],
|
|
):
|
|
super().__init__()
|
|
self.tree = sklearn_tree
|
|
self.feature_names = feature_names
|
|
self.class_names = class_names
|
|
self.class_image_paths = class_images_paths
|
|
self.class_colors = class_colors
|
|
# Make graph container for the tree
|
|
self.tree_group, self.nodes_map, self.edge_map = self._make_tree()
|
|
self.add(self.tree_group)
|
|
|
|
def _make_node(
|
|
self,
|
|
node_index,
|
|
):
|
|
"""Make node"""
|
|
is_split_node = (
|
|
self.tree.children_left[node_index] != self.tree.children_right[node_index]
|
|
)
|
|
if is_split_node:
|
|
node_feature = self.tree.feature[node_index]
|
|
node_threshold = self.tree.threshold[node_index]
|
|
node = SplitNode(self.feature_names[node_feature], node_threshold)
|
|
else:
|
|
# Get the most abundant class for the given leaf node
|
|
# Make the leaf node object
|
|
tree_class_index = np.argmax(self.tree.value[node_index])
|
|
node = LeafNode(
|
|
class_index=tree_class_index,
|
|
class_colors=self.class_colors,
|
|
class_image_paths=self.class_image_paths,
|
|
)
|
|
return node
|
|
|
|
def _make_connection(self, top, bottom, is_leaf=False):
|
|
"""Make a connection from top to bottom"""
|
|
top_node_bottom_location = top.get_center()
|
|
top_node_bottom_location[1] -= top.height / 2
|
|
bottom_node_top_location = bottom.get_center()
|
|
bottom_node_top_location[1] += bottom.height / 2
|
|
|
|
line = Line(top_node_bottom_location, bottom_node_top_location, color=WHITE)
|
|
|
|
return line
|
|
|
|
def _make_tree(self):
|
|
"""Construct the tree diagram"""
|
|
tree_group = Group()
|
|
max_depth = self.tree.max_depth
|
|
# Make the root node
|
|
nodes_map = {}
|
|
root_node = self._make_node(
|
|
node_index=0,
|
|
)
|
|
nodes_map[0] = root_node
|
|
tree_group.add(root_node)
|
|
# Save some information
|
|
node_height = root_node.height
|
|
node_width = root_node.width
|
|
scale_factor = 1.0
|
|
edge_map = {}
|
|
# tree height
|
|
tree_height = scale_factor * node_height * max_depth
|
|
tree_width = scale_factor * 2**max_depth * node_width
|
|
# traverse tree
|
|
def recurse(node_index, depth, direction, parent_object, parent_node):
|
|
# make the node object
|
|
is_leaf = (
|
|
self.tree.children_left[node_index]
|
|
== self.tree.children_right[node_index]
|
|
)
|
|
node_object = self._make_node(node_index=node_index)
|
|
nodes_map[node_index] = node_object
|
|
node_height = node_object.height
|
|
# set the node position
|
|
direction_factor = -1 if direction == "left" else 1
|
|
shift_right_amount = (
|
|
0.9 * direction_factor * scale_factor * tree_width / (2**depth) / 2
|
|
)
|
|
if is_leaf:
|
|
shift_down_amount = -1.0 * scale_factor * node_height
|
|
else:
|
|
shift_down_amount = -1.8 * scale_factor * node_height
|
|
node_object.match_x(parent_object).match_y(parent_object).shift(
|
|
[shift_right_amount, shift_down_amount, 0]
|
|
)
|
|
tree_group.add(node_object)
|
|
# make a connection
|
|
connection = self._make_connection(
|
|
parent_object, node_object, is_leaf=is_leaf
|
|
)
|
|
edge_name = str(parent_node) + "," + str(node_index)
|
|
edge_map[edge_name] = connection
|
|
tree_group.add(connection)
|
|
# recurse
|
|
if not is_leaf:
|
|
recurse(
|
|
self.tree.children_left[node_index],
|
|
depth + 1,
|
|
"left",
|
|
node_object,
|
|
node_index,
|
|
)
|
|
recurse(
|
|
self.tree.children_right[node_index],
|
|
depth + 1,
|
|
"right",
|
|
node_object,
|
|
node_index,
|
|
)
|
|
|
|
recurse(self.tree.children_left[0], 1, "left", root_node, 0)
|
|
recurse(self.tree.children_right[0], 1, "right", root_node, 0)
|
|
|
|
tree_group.scale(0.35)
|
|
return tree_group, nodes_map, edge_map
|
|
|
|
def create_level_order_expansion_decision_tree(self, tree):
|
|
"""Expands the decision tree in level order"""
|
|
raise NotImplementedError()
|
|
|
|
def create_bfs_expansion_decision_tree(self, tree):
|
|
"""Expands the tree using BFS"""
|
|
animations = []
|
|
split_node_animations = {} # Dictionary mapping split node to animation
|
|
# Compute parent mapping
|
|
parent_mapping = helpers.compute_node_to_parent_mapping(self.tree)
|
|
# Create the root node as most common class
|
|
placeholder_class_nodes = {}
|
|
root_node_class_index = np.argmax(
|
|
self.tree.value[0]
|
|
)
|
|
root_placeholder_node = LeafNode(
|
|
class_index=root_node_class_index,
|
|
class_colors=self.class_colors,
|
|
class_image_paths=self.class_image_paths,
|
|
)
|
|
root_placeholder_node.move_to(self.nodes_map[0])
|
|
placeholder_class_nodes[0] = root_placeholder_node
|
|
root_create_animation = AnimationGroup(
|
|
FadeIn(root_placeholder_node),
|
|
lag_ratio=0.0
|
|
)
|
|
animations.append(root_create_animation)
|
|
# Iterate through the nodes
|
|
queue = [0]
|
|
while len(queue) > 0:
|
|
node_index = queue.pop(0)
|
|
# Check if a node is a split node or not
|
|
left_child_index = self.tree.children_left[node_index]
|
|
right_child_index = self.tree.children_right[node_index]
|
|
is_leaf_node = left_child_index == right_child_index
|
|
if not is_leaf_node:
|
|
# Remove the currently placeholder class node
|
|
fade_out_animation = FadeOut(
|
|
placeholder_class_nodes[node_index]
|
|
)
|
|
animations.append(fade_out_animation)
|
|
# Fade in the split node
|
|
fade_in_animation = FadeIn(
|
|
self.nodes_map[node_index]
|
|
)
|
|
animations.append(fade_in_animation)
|
|
# Split the node by creating the children and connecting them
|
|
# to the parent
|
|
# Handle left child
|
|
assert left_child_index in self.nodes_map.keys()
|
|
left_node = self.nodes_map[left_child_index]
|
|
left_parent_edge = self.edge_map[f"{node_index},{left_child_index}"]
|
|
# Get the children of the left node
|
|
left_node_left_index = self.tree.children_left[left_child_index]
|
|
left_node_right_index = self.tree.children_right[left_child_index]
|
|
left_is_leaf = left_node_left_index == left_node_right_index
|
|
if left_is_leaf:
|
|
# If a child is a leaf then just create it
|
|
left_animation = FadeIn(left_node)
|
|
else:
|
|
# If the child is a split node find the dominant class and make a temp
|
|
left_node_class_index = np.argmax(
|
|
self.tree.value[left_child_index]
|
|
)
|
|
new_leaf_node = LeafNode(
|
|
class_index=left_node_class_index,
|
|
class_colors=self.class_colors,
|
|
class_image_paths=self.class_image_paths,
|
|
)
|
|
new_leaf_node.move_to(self.nodes_map[leaf_child_index])
|
|
placeholder_class_nodes[left_child_index] = new_leaf_node
|
|
left_animation = AnimationGroup(
|
|
FadeIn(new_leaf_node),
|
|
Create(left_parent_edge),
|
|
lag_ratio=0.0
|
|
)
|
|
# Handle right child
|
|
assert right_child_index in self.nodes_map.keys()
|
|
right_node = self.nodes_map[right_child_index]
|
|
right_parent_edge = self.edge_map[f"{node_index},{right_child_index}"]
|
|
# Get the children of the left node
|
|
right_node_left_index = self.tree.children_left[right_child_index]
|
|
right_node_right_index = self.tree.children_right[right_child_index]
|
|
right_is_leaf = right_node_left_index == right_node_right_index
|
|
if right_is_leaf:
|
|
# If a child is a leaf then just create it
|
|
right_animation = FadeIn(right_node)
|
|
else:
|
|
# If the child is a split node find the dominant class and make a temp
|
|
right_node_class_index = np.argmax(
|
|
self.tree.value[right_child_index]
|
|
)
|
|
new_leaf_node = LeafNode(
|
|
class_index=right_node_class_index,
|
|
class_colors=self.class_colors,
|
|
class_image_paths=self.class_image_paths,
|
|
)
|
|
placeholder_class_nodes[right_child_index] = new_leaf_node
|
|
right_animation = AnimationGroup(
|
|
FadeIn(new_leaf_node),
|
|
Create(right_parent_edge),
|
|
lag_ratio=0.0
|
|
)
|
|
# Combine the animations
|
|
split_animation = AnimationGroup(
|
|
left_animation,
|
|
right_animation,
|
|
lag_ratio=0.0,
|
|
)
|
|
animations.append(split_animation)
|
|
# Add the split animation to the split node dict
|
|
split_node_animations[node_index] = split_animation
|
|
# Add the children to the queue
|
|
if left_child_index != -1:
|
|
queue.append(left_child_index)
|
|
if right_child_index != -1:
|
|
queue.append(right_child_index)
|
|
|
|
return Succession(
|
|
*animations,
|
|
lag_ratio=1.0
|
|
), split_node_animations
|
|
|
|
def make_expand_tree_animation(self, node_expand_order):
|
|
"""
|
|
Make an animation for expanding the decision tree
|
|
|
|
Shows each split node as a leaf node initially, and
|
|
then when it comes up shows it as a split node. The
|
|
reason for this is for purposes of animating each of the
|
|
splits in a decision surface.
|
|
"""
|
|
# Show the root node as a leaf node
|
|
# Iterate through the nodes in the traversal order
|
|
for node_index in node_expand_order[1:]:
|
|
# Figure out if it is a leaf or not
|
|
# If it is not a leaf then remove the placeholder leaf node
|
|
# then show the split node
|
|
# If it is a leaf then just show the leaf node
|
|
pass
|
|
|
|
@override_animation(Create)
|
|
def create_decision_tree(self, traversal_order="bfs"):
|
|
"""Makes a create animation for the decision tree"""
|
|
# Comptue the node expand order
|
|
if traversal_order == "level":
|
|
node_expand_order = helpers.compute_level_order_traversal(self.tree)
|
|
elif traversal_order == "bfs":
|
|
node_expand_order = helpers.compute_bfs_traversal(self.tree)
|
|
else:
|
|
raise Exception(f"Uncrecognized traversal: {traversal_order}")
|
|
# Make the animation
|
|
expand_tree_animation = self.make_expand_tree_animation(node_expand_order)
|
|
return expand_tree_animation
|
|
|
|
class DecisionTreeContainer(OneToOneSync):
|
|
"""Connects the DecisionTreeDiagram to the DecisionTreeEmbedding"""
|
|
|
|
def __init__(self, sklearn_tree, points, classes):
|
|
self.sklearn_tree = sklearn_tree
|
|
self.points = points
|
|
self.classes = classes
|
|
|
|
def make_unfold_tree_animation(self):
|
|
"""Unfolds the tree through an in order traversal
|
|
|
|
This animations unfolds the tree diagram as well as showing the splitting
|
|
of a shaded region in the Decision Tree embedding.
|
|
"""
|
|
# Draw points in the embedding
|
|
# Start the tree splitting animation
|
|
pass
|