mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-05-18 03:05:23 +08:00
235 lines
6.1 KiB
Python
235 lines
6.1 KiB
Python
from cv2 import exp
|
|
from manim import *
|
|
from manim_ml.neural_network.layers.embedding import EmbeddingLayer
|
|
from manim_ml.neural_network.layers.embedding_to_feed_forward import (
|
|
EmbeddingToFeedForward,
|
|
)
|
|
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
|
|
from manim_ml.neural_network.layers.feed_forward_to_embedding import (
|
|
FeedForwardToEmbedding,
|
|
)
|
|
from manim_ml.neural_network.layers.feed_forward_to_feed_forward import (
|
|
FeedForwardToFeedForward,
|
|
)
|
|
from manim_ml.neural_network.layers.image import ImageLayer
|
|
from manim_ml.neural_network.neural_network import (
|
|
NeuralNetwork,
|
|
FeedForwardNeuralNetwork,
|
|
)
|
|
from PIL import Image
|
|
import numpy as np
|
|
|
|
config.pixel_height = 720
|
|
config.pixel_width = 1280
|
|
config.frame_height = 6.0
|
|
config.frame_width = 6.0
|
|
|
|
"""
|
|
Unit Tests
|
|
"""
|
|
|
|
|
|
def assert_classes_match(all_layers, expected_classes):
|
|
assert len(list(all_layers)) == 5
|
|
|
|
for index, layer in enumerate(all_layers):
|
|
expected_class = expected_classes[index]
|
|
assert isinstance(
|
|
layer, expected_class
|
|
), f"Wrong layer class {layer.__class__} expected {expected_class}"
|
|
|
|
|
|
def test_embedding_layer():
|
|
embedding_layer = EmbeddingLayer()
|
|
|
|
neural_network = NeuralNetwork(
|
|
[FeedForwardLayer(5), FeedForwardLayer(3), embedding_layer]
|
|
)
|
|
|
|
expected_classes = [
|
|
FeedForwardLayer,
|
|
FeedForwardToFeedForward,
|
|
FeedForwardLayer,
|
|
FeedForwardToEmbedding,
|
|
EmbeddingLayer,
|
|
]
|
|
|
|
assert_classes_match(neural_network.all_layers, expected_classes)
|
|
|
|
|
|
def test_remove_layer():
|
|
embedding_layer = EmbeddingLayer()
|
|
|
|
neural_network = NeuralNetwork(
|
|
[FeedForwardLayer(5), FeedForwardLayer(3), embedding_layer]
|
|
)
|
|
|
|
expected_classes = [
|
|
FeedForwardLayer,
|
|
FeedForwardToFeedForward,
|
|
FeedForwardLayer,
|
|
FeedForwardToEmbedding,
|
|
EmbeddingLayer,
|
|
]
|
|
|
|
assert_classes_match(neural_network.all_layers, expected_classes)
|
|
|
|
print("before removal")
|
|
print(list(neural_network.all_layers))
|
|
neural_network.remove_layer(embedding_layer)
|
|
print("after removal")
|
|
print(list(neural_network.all_layers))
|
|
|
|
expected_classes = [
|
|
FeedForwardLayer,
|
|
FeedForwardToFeedForward,
|
|
FeedForwardLayer,
|
|
]
|
|
|
|
print(list(neural_network.all_layers))
|
|
|
|
assert_classes_match(neural_network.all_layers, expected_classes)
|
|
|
|
|
|
class FeedForwardNeuralNetworkScene(Scene):
|
|
def construct(self):
|
|
nn = FeedForwardNeuralNetwork([3, 5, 3])
|
|
self.play(Create(nn))
|
|
self.play(Wait(3))
|
|
|
|
|
|
class NeuralNetworkScene(Scene):
|
|
"""Test Scene for the Neural Network"""
|
|
|
|
def construct(self):
|
|
# Make the Layer object
|
|
layers = [FeedForwardLayer(3), FeedForwardLayer(5), FeedForwardLayer(3)]
|
|
nn = NeuralNetwork(layers)
|
|
nn.move_to(ORIGIN)
|
|
# Make Animation
|
|
self.add(nn)
|
|
# self.play(Create(nn))
|
|
forward_propagation_animation = nn.make_forward_pass_animation(
|
|
run_time=5, passing_flash=True
|
|
)
|
|
|
|
self.play(forward_propagation_animation)
|
|
|
|
|
|
class GrayscaleImageNeuralNetworkScene(Scene):
|
|
def construct(self):
|
|
image = Image.open("images/image.jpeg")
|
|
numpy_image = np.asarray(image)
|
|
# Make nn
|
|
layers = [
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(5),
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(6),
|
|
ImageLayer(numpy_image, height=1.4),
|
|
]
|
|
nn = NeuralNetwork(layers)
|
|
nn.scale(1.3)
|
|
# Center the nn
|
|
nn.move_to(ORIGIN)
|
|
self.add(nn)
|
|
# Play animation
|
|
self.play(nn.make_forward_pass_animation(run_time=5))
|
|
self.play(nn.make_forward_pass_animation(run_time=5))
|
|
|
|
|
|
class ImageNeuralNetworkScene(Scene):
|
|
def construct(self):
|
|
image = Image.open("../assets/gan/real_image.jpg")
|
|
numpy_image = np.asarray(image)
|
|
# Make nn
|
|
layers = [
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(5),
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(6),
|
|
ImageLayer(numpy_image, height=1.4),
|
|
]
|
|
nn = NeuralNetwork(layers)
|
|
nn.scale(1.3)
|
|
# Center the nn
|
|
nn.move_to(ORIGIN)
|
|
self.add(nn)
|
|
# Play animation
|
|
self.play(nn.make_forward_pass_animation(run_time=5))
|
|
self.play(nn.make_forward_pass_animation(run_time=5))
|
|
|
|
|
|
class RecursiveNNScene(Scene):
|
|
def construct(self):
|
|
nn = NeuralNetwork(
|
|
[
|
|
NeuralNetwork([FeedForwardLayer(3), FeedForwardLayer(2)]),
|
|
NeuralNetwork([FeedForwardLayer(2), FeedForwardLayer(3)]),
|
|
]
|
|
)
|
|
|
|
self.play(Create(nn))
|
|
|
|
|
|
class LayerInsertionScene(Scene):
|
|
def construct(self):
|
|
pass
|
|
|
|
|
|
class LayerRemovalScene(Scene):
|
|
def construct(self):
|
|
image = Image.open("images/image.jpeg")
|
|
numpy_image = np.asarray(image)
|
|
|
|
layer = FeedForwardLayer(5)
|
|
layers = [
|
|
ImageLayer(numpy_image, height=1.4),
|
|
FeedForwardLayer(3),
|
|
layer,
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(6),
|
|
]
|
|
|
|
nn = NeuralNetwork(layers)
|
|
|
|
self.play(Create(nn))
|
|
remove_animation = nn.remove_layer(layer)
|
|
print("before remove")
|
|
self.play(remove_animation)
|
|
print(nn)
|
|
print("after remove")
|
|
|
|
|
|
class LayerInsertionScene(Scene):
|
|
def construct(self):
|
|
image = Image.open("images/image.jpeg")
|
|
numpy_image = np.asarray(image)
|
|
|
|
layers = [
|
|
ImageLayer(numpy_image, height=1.4),
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(6),
|
|
]
|
|
|
|
nn = NeuralNetwork(layers)
|
|
|
|
self.play(Create(nn))
|
|
|
|
layer = FeedForwardLayer(5)
|
|
insert_animation = nn.insert_layer(layer, 4)
|
|
self.play(insert_animation)
|
|
print(nn)
|
|
print("after remove")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
"""Render all scenes"""
|
|
# Feed Forward Neural Network
|
|
ffnn_scene = FeedForwardNeuralNetworkScene()
|
|
ffnn_scene.render()
|
|
# Neural Network
|
|
nn_scene = NeuralNetworkScene()
|
|
nn_scene.render()
|