Files
ManimML/manim_ml/neural_network.py

158 lines
6.1 KiB
Python

"""Neural Network Manim Visualization
This module is responsible for generating a neural network visualization with
manim, specifically a fully connected neural network diagram.
Example:
# Specify how many nodes are in each node layer
layer_node_count = [5, 3, 5]
# Create the object with default style settings
NeuralNetwork(layer_node_count)
"""
from manim import *
class NeuralNetworkLayer(VGroup):
"""Handles rendering a layer for a neural network"""
def __init__(
self, num_nodes, layer_buffer=SMALL_BUFF/2, node_radius=0.08,
node_color=BLUE, node_outline_color=WHITE, rectangle_color=WHITE,
node_spacing=0.3, rectangle_fill_color=BLACK, node_stroke_width=2.0,
rectangle_stroke_width=2.0):
super(VGroup, self).__init__()
self.num_nodes = num_nodes
self.layer_buffer = layer_buffer
self.node_radius = node_radius
self.node_color = node_color
self.node_stroke_width = node_stroke_width
self.node_outline_color = node_outline_color
self.rectangle_stroke_width = rectangle_stroke_width
self.rectangle_color = rectangle_color
self.node_spacing = node_spacing
self.rectangle_fill_color = rectangle_fill_color
self.node_group = VGroup()
self._construct_neural_network_layer()
def _construct_neural_network_layer(self):
"""Creates the neural network layer"""
# Add Nodes
for node_number in range(self.num_nodes):
node_object = Circle(radius=self.node_radius, color=self.node_color, stroke_width=self.node_stroke_width)
self.node_group.add(node_object)
# Space the nodes
# Assumes Vertical orientation
for node_index, node_object in enumerate(self.node_group):
location = node_index * self.node_spacing
node_object.move_to([0, location, 0])
# Create Surrounding Rectangle
surrounding_rectangle = SurroundingRectangle(
self.node_group, color=self.rectangle_color, fill_color=self.rectangle_fill_color,
fill_opacity=1.0, buff=self.layer_buffer, stroke_width=self.rectangle_stroke_width
)
# Add the objects to the class
self.add(surrounding_rectangle, self.node_group)
class NeuralNetwork(VGroup):
def __init__(
self, layer_node_count, layer_width=0.6, node_radius=1.0,
node_color=BLUE, edge_color=WHITE, layer_spacing=0.8,
animation_dot_color=RED, edge_width=2.0, dot_radius=0.05):
super(VGroup, self).__init__()
self.layer_node_count = layer_node_count
self.layer_width = layer_width
self.node_radius = node_radius
self.edge_width = edge_width
self.node_color = node_color
self.edge_color = edge_color
self.layer_spacing = layer_spacing
self.animation_dot_color = animation_dot_color
self.dot_radius = dot_radius
# TODO take layer_node_count [0, (1, 2), 0]
# and make it have explicit distinct subspaces
self.layers = self._construct_layers()
self.edge_layers = self._construct_edges()
self.add(self.edge_layers)
self.add(self.layers)
def _construct_layers(self):
"""Creates the neural network"""
layers = VGroup()
# Create each layer
for layer_index, node_count in enumerate(self.layer_node_count):
layer = NeuralNetworkLayer(node_count, node_color=self.node_color)
# Manage spacing
layer.move_to([self.layer_spacing * layer_index, 0, 0])
# Add layer to VGroup
layers.add(layer)
# Handle layering
layers.set_z_index(2)
return layers
def _construct_edges(self):
"""Draws connecting lines between layers"""
edge_layers = VGroup()
for layer_index in range(len(self.layer_node_count) - 1):
current_layer = self.layers[layer_index]
next_layer = self.layers[layer_index + 1]
edge_layer = VGroup()
# Go through each node in the two layers and make a connecting line
for node_i in current_layer.node_group:
for node_j in next_layer.node_group:
line = Line(node_i.get_center(), node_j.get_center(), color=self.edge_color, stroke_width=self.edge_width)
edge_layer.add(line)
edge_layers.add(edge_layer)
# Handle layering
edge_layers.set_z_index(0)
return edge_layers
def make_forward_propagation_animation(self, run_time=2):
"""Generates an animation for feed forward propogation"""
all_animations = []
per_layer_run_time = run_time / len(self.edge_layers)
self.dots = VGroup()
for edge_layer in self.edge_layers:
path_animations = []
for edge in edge_layer:
dot = Dot(color=self.animation_dot_color, fill_opacity=1.0, radius=self.dot_radius)
# Handle layering
dot.set_z_index(1)
# Add to dots group
self.dots.add(dot)
# Make the animation
anim = MoveAlongPath(dot, edge, run_time=per_layer_run_time, rate_function=sigmoid)
path_animations.append(anim)
path_animation_group = AnimationGroup(*path_animations)
all_animations.append(path_animation_group)
animation_group = AnimationGroup(*all_animations, run_time=run_time, lag_ratio=1)
return animation_group
config.pixel_height = 720
config.pixel_width = 1280
config.frame_height = 6.0
config.frame_width = 6.0
class TestNeuralNetworkScene(Scene):
"""Test Scene for the Neural Network"""
def construct(self):
# Make the Layer object
num_nodes = [8, 5, 3, 5]
nn = NeuralNetwork(num_nodes)
nn.move_to(ORIGIN)
# Make Animation
self.add(nn)
forward_propagation_animation = nn.make_forward_propagation_animation()
second_nn = NeuralNetwork([3, 4])
self.add(second_nn)
self.play(forward_propagation_animation)
self.play(second_nn.make_forward_propagation_animation())