mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-06-18 12:07:46 +08:00
288 lines
12 KiB
Python
288 lines
12 KiB
Python
from manim import *
|
|
from manim_ml.neural_network.layers.convolutional3d import Convolutional3DLayer
|
|
from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer, ThreeDLayer
|
|
from manim_ml.gridded_rectangle import GriddedRectangle, CornersRectangle
|
|
|
|
class Filters(VGroup):
|
|
"""Group for showing a collection of filters connecting two layers"""
|
|
|
|
def __init__(self, input_layer, output_layer, line_color=ORANGE, stroke_width=2.0):
|
|
super().__init__()
|
|
self.input_layer = input_layer
|
|
self.output_layer = output_layer
|
|
self.line_color = line_color
|
|
self.stroke_width = stroke_width
|
|
# Make the filter
|
|
self.input_rectangles = self.make_input_feature_map_rectangles()
|
|
self.add(self.input_rectangles)
|
|
self.output_rectangles = self.make_output_feature_map_rectangles()
|
|
self.add(self.output_rectangles)
|
|
self.connective_lines = self.make_connective_lines()
|
|
self.add(self.connective_lines)
|
|
|
|
def make_input_feature_map_rectangles(self):
|
|
rectangles = []
|
|
|
|
rectangle_width = self.input_layer.filter_width * self.input_layer.cell_width
|
|
rectangle_height = self.input_layer.filter_height * self.input_layer.cell_width
|
|
filter_color = self.input_layer.filter_color
|
|
|
|
for index, feature_map in enumerate(self.input_layer.feature_maps):
|
|
rectangle = GriddedRectangle(
|
|
center=feature_map.get_center(),
|
|
width=rectangle_width,
|
|
height=rectangle_height,
|
|
fill_color=filter_color,
|
|
stroke_color=filter_color,
|
|
fill_opacity=0.2,
|
|
z_index=2,
|
|
stroke_width=self.stroke_width,
|
|
)
|
|
# Center on feature map
|
|
# rectangle.move_to(feature_map.get_center())
|
|
# Rotate so it is in the yz plane
|
|
rectangle.rotate(
|
|
90 * DEGREES,
|
|
axis=[0, 1, 0]
|
|
)
|
|
# Get the feature map top left corner
|
|
feature_map_top_left = feature_map.get_corners_dict(inner_rectangle=True)["top_left"]
|
|
rectangle_top_left = rectangle.get_corners_dict()["top_left"]
|
|
# Move the rectangle to the corner location
|
|
rectangle.next_to(
|
|
feature_map_top_left,
|
|
submobject_to_align=rectangle_top_left,
|
|
buff=0.0
|
|
)
|
|
|
|
rectangles.append(rectangle)
|
|
|
|
feature_map_rectangles = VGroup(*rectangles)
|
|
|
|
return feature_map_rectangles
|
|
|
|
def make_output_feature_map_rectangles(self):
|
|
rectangles = []
|
|
|
|
rectangle_width = self.output_layer.cell_width
|
|
rectangle_height = self.output_layer.cell_width
|
|
filter_color = self.output_layer.filter_color
|
|
|
|
for index, feature_map in enumerate(self.output_layer.feature_maps):
|
|
rectangle = GriddedRectangle(
|
|
center=feature_map.get_center(),
|
|
width=rectangle_width,
|
|
height=rectangle_height,
|
|
fill_color=filter_color,
|
|
stroke_color=filter_color,
|
|
fill_opacity=0.2,
|
|
stroke_width=self.stroke_width,
|
|
z_index=2,
|
|
)
|
|
# Center on feature map
|
|
# rectangle.move_to(feature_map.get_center())
|
|
# Rotate so it is in the yz plane
|
|
rectangle.rotate(
|
|
90 * DEGREES,
|
|
axis=[0, 1, 0]
|
|
)
|
|
# Get the feature map top left corner
|
|
feature_map_top_left = feature_map.get_corners_dict(inner_rectangle=True)["top_left"]
|
|
rectangle_top_left = rectangle.get_corners_dict()["top_left"]
|
|
# Move the rectangle to the corner location
|
|
rectangle.next_to(
|
|
feature_map_top_left,
|
|
submobject_to_align=rectangle_top_left,
|
|
buff=0.0
|
|
)
|
|
|
|
rectangles.append(rectangle)
|
|
|
|
feature_map_rectangles = VGroup(*rectangles)
|
|
|
|
return feature_map_rectangles
|
|
|
|
def make_connective_lines(self):
|
|
"""Lines connecting input filter with output node"""
|
|
|
|
corner_names = ["top_left", "bottom_left", "top_right", "bottom_right"]
|
|
|
|
def make_input_connective_lines():
|
|
"""Makes connective lines between the corners of the input filters"""
|
|
first_input_rectangle = self.input_rectangles[0]
|
|
last_input_rectangle = self.input_rectangles[-1]
|
|
# Get the corner dots for each rectangle
|
|
first_input_corners = first_input_rectangle.get_corners_dict()
|
|
last_input_corners = last_input_rectangle.get_corners_dict()
|
|
# Iterate through each corner and make the lines
|
|
lines = []
|
|
for corner_name in corner_names:
|
|
line = Line(
|
|
first_input_corners[corner_name].get_center(),
|
|
last_input_corners[corner_name].get_center(),
|
|
color=self.line_color,
|
|
stroke_width=self.stroke_width
|
|
)
|
|
lines.append(line)
|
|
|
|
return VGroup(*lines)
|
|
|
|
def make_output_connective_lines():
|
|
"""Makes connective lines between the corners of the output filters"""
|
|
first_output_rectangle = self.output_rectangles[0]
|
|
last_output_rectangle = self.output_rectangles[-1]
|
|
# Get the corner dots for each rectangle
|
|
first_output_corners = first_output_rectangle.get_corners_dict()
|
|
last_output_corners = last_output_rectangle.get_corners_dict()
|
|
# Iterate through each corner and make the lines
|
|
lines = []
|
|
for corner_name in corner_names:
|
|
line = Line(
|
|
first_output_corners[corner_name].get_center(),
|
|
last_output_corners[corner_name].get_center(),
|
|
color=self.line_color,
|
|
stroke_width=self.stroke_width
|
|
)
|
|
lines.append(line)
|
|
|
|
return VGroup(*lines)
|
|
|
|
def make_input_to_output_connective_lines():
|
|
"""Make connective lines between last input filter and first output filter"""
|
|
last_input_rectangle = self.input_rectangles[-1]
|
|
first_output_rectangle = self.output_rectangles[0]
|
|
# Get the corner dots for each rectangle
|
|
last_input_corners = last_input_rectangle.get_corners_dict()
|
|
first_output_corners = first_output_rectangle.get_corners_dict()
|
|
# Iterate through each corner and make the lines
|
|
lines = []
|
|
for corner_name in corner_names:
|
|
line = Line(
|
|
last_input_corners[corner_name].get_center(),
|
|
first_output_corners[corner_name].get_center(),
|
|
color=self.line_color,
|
|
stroke_width=self.stroke_width
|
|
)
|
|
lines.append(line)
|
|
|
|
return VGroup(*lines)
|
|
|
|
input_lines = make_input_connective_lines()
|
|
output_lines = make_output_connective_lines()
|
|
input_output_lines = make_input_to_output_connective_lines()
|
|
|
|
connective_lines = VGroup(
|
|
*input_lines,
|
|
*output_lines,
|
|
*input_output_lines
|
|
)
|
|
|
|
return connective_lines
|
|
|
|
class Convolutional3DToConvolutional3D(ConnectiveLayer, ThreeDLayer):
|
|
"""Feed Forward to Embedding Layer"""
|
|
input_class = Convolutional3DLayer
|
|
output_class = Convolutional3DLayer
|
|
|
|
def __init__(self, input_layer: Convolutional3DLayer, output_layer: Convolutional3DLayer,
|
|
color=WHITE, filter_opacity=0.3, line_color=WHITE,
|
|
pulse_color=ORANGE, **kwargs):
|
|
super().__init__(input_layer, output_layer, input_class=Convolutional3DLayer,
|
|
output_class=Convolutional3DLayer, **kwargs)
|
|
self.color = color
|
|
self.filter_color = self.input_layer.filter_color
|
|
self.filter_width = self.input_layer.filter_width
|
|
self.filter_height = self.input_layer.filter_height
|
|
self.feature_map_width = self.input_layer.feature_map_width
|
|
self.feature_map_height = self.input_layer.feature_map_height
|
|
self.num_input_feature_maps = self.input_layer.num_feature_maps
|
|
self.num_output_feature_maps = self.output_layer.num_feature_maps
|
|
self.cell_width = self.input_layer.cell_width
|
|
self.stride = self.input_layer.stride
|
|
self.filter_opacity = filter_opacity
|
|
self.line_color = line_color
|
|
self.pulse_color = pulse_color
|
|
|
|
def make_filter_propagation_animation(self):
|
|
"""Make filter propagation animation"""
|
|
# TODO implement this
|
|
raise NotImplementedError()
|
|
# Deprecated code
|
|
old_z_index = self.filter_lines.z_index
|
|
lines_copy = self.filter_lines.copy().set_color(ORANGE).set_z_index(old_z_index + 1)
|
|
animation_group = AnimationGroup(
|
|
Create(lines_copy, lag_ratio=0.0),
|
|
# FadeOut(self.filter_lines),
|
|
FadeOut(lines_copy),
|
|
lag_ratio=1.0
|
|
)
|
|
|
|
return animation_group
|
|
|
|
def make_forward_pass_animation(self, layer_args={}, run_time=10.5, **kwargs):
|
|
"""Forward pass animation from conv2d to conv2d"""
|
|
animations = []
|
|
# Create the filters, output nodes (feature map square), and lines
|
|
filters = Filters(self.input_layer, self.output_layer)
|
|
self.add(filters)
|
|
# Make animations for creating the filters, output_nodes, and filter_lines
|
|
# TODO decide if I want to create the filters at the start of a conv
|
|
# animation or have them there by default
|
|
# animations.append(
|
|
# Create(filters)
|
|
# )
|
|
# Make shift amounts
|
|
right_shift = np.array([0, self.input_layer.cell_width, 0])# * 1.55
|
|
left_shift = np.array([0, -1*self.input_layer.cell_width, 0])# * 1.55
|
|
up_shift = np.array([0, 0, -1*self.input_layer.cell_width])# * 1.55
|
|
down_shift = np.array([0, 0, self.input_layer.cell_width])# * 1.55
|
|
# Make filter shifting animations
|
|
num_y_moves = int((self.feature_map_height - self.filter_height) / self.stride)
|
|
num_x_moves = int((self.feature_map_width - self.filter_width) / self.stride)
|
|
for y_move in range(num_y_moves):
|
|
# Go right num_x_moves
|
|
for x_move in range(num_x_moves):
|
|
# Shift right
|
|
shift_animation = ApplyMethod(
|
|
filters.shift,
|
|
self.stride * right_shift
|
|
)
|
|
# shift_animation = self.animate.shift(right_shift)
|
|
animations.append(shift_animation)
|
|
|
|
# Go back left num_x_moves and down one
|
|
shift_amount = self.stride * num_x_moves * left_shift + self.stride * down_shift
|
|
# Make the animation
|
|
shift_animation = ApplyMethod(
|
|
filters.shift,
|
|
shift_amount
|
|
)
|
|
animations.append(shift_animation)
|
|
# Do last row move right
|
|
for x_move in range(num_x_moves):
|
|
# Shift right
|
|
shift_animation = ApplyMethod(
|
|
filters.shift,
|
|
self.stride * right_shift
|
|
)
|
|
# shift_animation = self.animate.shift(right_shift)
|
|
animations.append(shift_animation)
|
|
|
|
# Remove filters
|
|
return Succession(
|
|
*animations,
|
|
lag_ratio=1.0
|
|
)
|
|
|
|
def set_z_index(self, z_index, family=False):
|
|
"""Override set_z_index"""
|
|
super().set_z_index(4)
|
|
|
|
def scale(self, scale_factor, **kwargs):
|
|
self.cell_width *= scale_factor
|
|
super().scale(scale_factor, **kwargs)
|
|
|
|
@override_animation(Create)
|
|
def _create_override(self, **kwargs):
|
|
return AnimationGroup()
|