Files
ManimML/examples/cnn/padding_example.py
2023-02-01 22:33:42 -05:00

85 lines
2.3 KiB
Python

from manim import *
from manim_ml.neural_network.layers.image import ImageLayer
import numpy as np
from PIL import Image
from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
ROOT_DIR = Path(__file__).parents[2]
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 1900
config.frame_height = 6.0
config.frame_width = 6.0
def make_code_snippet():
code_str = """
# Make nn
nn = NeuralNetwork([
ImageLayer(numpy_image),
Convolutional2DLayer(1, 6, 1, padding=1),
Convolutional2DLayer(3, 6, 3),
FeedForwardLayer(3),
FeedForwardLayer(1),
])
# Play animation
self.play(nn.make_forward_pass_animation())
"""
code = Code(
code=code_str,
tab_width=4,
background_stroke_width=1,
background_stroke_color=WHITE,
insert_line_no=False,
style="monokai",
# background="window",
language="py",
)
code.scale(0.38)
return code
class CombinedScene(ThreeDScene):
def construct(self):
# Make nn
image = Image.open(ROOT_DIR / "assets/mnist/digit.jpeg")
numpy_image = np.asarray(image)
# Make nn
nn = NeuralNetwork(
[
ImageLayer(numpy_image, height=1.5),
Convolutional2DLayer(
num_feature_maps=1,
feature_map_size=6,
padding=1,
padding_dashed=True,
),
Convolutional2DLayer(
num_feature_maps=3,
feature_map_size=6,
filter_size=3,
padding=0,
padding_dashed=False,
),
FeedForwardLayer(3),
FeedForwardLayer(1),
],
layer_spacing=0.25,
)
# Center the nn
self.add(nn)
code = make_code_snippet()
code.next_to(nn, DOWN)
self.add(code)
Group(code, nn).move_to(ORIGIN)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass, run_time=20)