mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-06-06 19:39:01 +08:00
126 lines
5.3 KiB
Python
126 lines
5.3 KiB
Python
"""Neural Network Manim Visualization
|
|
|
|
This module is responsible for generating a neural network visualization with
|
|
manim, specifically a fully connected neural network diagram.
|
|
|
|
Example:
|
|
# Specify how many nodes are in each node layer
|
|
layer_node_count = [5, 3, 5]
|
|
# Create the object with default style settings
|
|
NeuralNetwork(layer_node_count)
|
|
"""
|
|
from manim import *
|
|
from matplotlib import animation
|
|
from numpy import isin
|
|
import warnings
|
|
from manim_ml.neural_network.layers import FeedForwardLayer, ImageLayer
|
|
from manim_ml.neural_network.connective_layers import FeedForwardToFeedForward, ImageToFeedForward
|
|
|
|
class NeuralNetwork(VGroup):
|
|
|
|
def __init__(self, input_layers, edge_color=WHITE, layer_spacing=0.8,
|
|
animation_dot_color=RED, edge_width=1.5, dot_radius=0.03):
|
|
super().__init__()
|
|
self.input_layers = VGroup(*input_layers)
|
|
self.edge_width = edge_width
|
|
self.edge_color = edge_color
|
|
self.layer_spacing = layer_spacing
|
|
self.animation_dot_color = animation_dot_color
|
|
self.dot_radius = dot_radius
|
|
# TODO take layer_node_count [0, (1, 2), 0]
|
|
# and make it have explicit distinct subspaces
|
|
self._place_layers()
|
|
self.connective_layers, self.all_layers = self._construct_connective_layers()
|
|
# Center the whole diagram by default
|
|
self.all_layers.move_to(ORIGIN)
|
|
self.add(self.all_layers)
|
|
|
|
def _place_layers(self):
|
|
"""Creates the neural network"""
|
|
# TODO implement more sophisticated custom layouts
|
|
for layer_index in range(1, len(self.input_layers)):
|
|
previous_layer = self.input_layers[layer_index - 1]
|
|
current_layer = self.input_layers[layer_index]
|
|
# Manage spacing
|
|
# Default: half each width times 2
|
|
spacing = config.frame_width * 0.05 + (previous_layer.width / 2 + current_layer.width / 2)
|
|
current_layer.move_to(previous_layer.get_center())
|
|
current_layer.shift(np.array([spacing, 0, 0]))
|
|
# Add layer to VGroup
|
|
# Handle layering
|
|
self.input_layers.set_z_index(2)
|
|
|
|
def _construct_connective_layers(self):
|
|
"""Draws connecting lines between layers"""
|
|
connective_layers = VGroup()
|
|
all_layers = VGroup()
|
|
for layer_index in range(len(self.input_layers) - 1):
|
|
current_layer = self.input_layers[layer_index]
|
|
all_layers.add(current_layer)
|
|
next_layer = self.input_layers[layer_index + 1]
|
|
|
|
if isinstance(current_layer, FeedForwardLayer) \
|
|
and isinstance(next_layer, FeedForwardLayer):
|
|
edge_layer = FeedForwardToFeedForward(current_layer, next_layer,
|
|
edge_width=self.edge_width)
|
|
connective_layers.add(edge_layer)
|
|
all_layers.add(edge_layer)
|
|
elif isinstance(current_layer, ImageLayer) \
|
|
and isinstance(next_layer, FeedForwardLayer):
|
|
image_to_feedforward = ImageToFeedForward(current_layer, next_layer, dot_radius=self.dot_radius)
|
|
connective_layers.add(image_to_feedforward)
|
|
all_layers.add(image_to_feedforward)
|
|
else:
|
|
warnings.warn(f"Warning: unimplemented connection for layer types: {type(current_layer)} and {type(next_layer)}")
|
|
# Add final layer
|
|
all_layers.add(self.input_layers[-1])
|
|
# Handle layering
|
|
connective_layers.set_z_index(0)
|
|
return connective_layers, all_layers
|
|
|
|
def make_forward_pass_animation(self, run_time=10, passing_flash=True):
|
|
"""Generates an animation for feed forward propogation"""
|
|
all_animations = []
|
|
|
|
for layer_index, layer in enumerate(self.input_layers[:-1]):
|
|
layer_forward_pass = layer.make_forward_pass_animation()
|
|
all_animations.append(layer_forward_pass)
|
|
|
|
connective_layer = self.connective_layers[layer_index]
|
|
connective_forward_pass = connective_layer.make_forward_pass_animation()
|
|
all_animations.append(connective_forward_pass)
|
|
|
|
# Do last layer animation
|
|
last_layer_forward_pass = self.input_layers[-1].make_forward_pass_animation()
|
|
all_animations.append(last_layer_forward_pass)
|
|
# Make the animation group
|
|
animation_group = AnimationGroup(*all_animations, run_time=run_time, lag_ratio=1.0)
|
|
|
|
return animation_group
|
|
|
|
@override_animation(Create)
|
|
def _create_override(self, **kwargs):
|
|
"""Overrides Create animation"""
|
|
# Create each layer one by one
|
|
animations = []
|
|
|
|
for layer in self.all_layers:
|
|
animation = Create(layer)
|
|
animations.append(animation)
|
|
|
|
animation_group = AnimationGroup(*animations, lag_ratio=1.0)
|
|
|
|
return animation_group
|
|
|
|
class FeedForwardNeuralNetwork(NeuralNetwork):
|
|
"""NeuralNetwork with just feed forward layers"""
|
|
|
|
def __init__(self, layer_node_count, node_radius=0.08,
|
|
node_color=BLUE, **kwargs):
|
|
# construct layers
|
|
layers = []
|
|
for num_nodes in layer_node_count:
|
|
layer = FeedForwardLayer(num_nodes, node_color=node_color, node_radius=node_radius)
|
|
layers.append(layer)
|
|
# call super class
|
|
super().__init__(layers, **kwargs) |