Files
ManimML/tests/test_neural_network.py
2022-04-22 19:08:28 -04:00

247 lines
6.6 KiB
Python

from cv2 import exp
from manim import *
from manim_ml.neural_network.layers.embedding import EmbeddingLayer
from manim_ml.neural_network.layers.embedding_to_feed_forward import EmbeddingToFeedForward
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.feed_forward_to_embedding import FeedForwardToEmbedding
from manim_ml.neural_network.layers.feed_forward_to_feed_forward import FeedForwardToFeedForward
from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork, FeedForwardNeuralNetwork
from PIL import Image
import numpy as np
config.pixel_height = 720
config.pixel_width = 1280
config.frame_height = 6.0
config.frame_width = 6.0
"""
Unit Tests
"""
def assert_classes_match(all_layers, expected_classes):
assert len(list(all_layers)) == 5
for index, layer in enumerate(all_layers):
expected_class = expected_classes[index]
assert isinstance(layer, expected_class), f"Wrong layer class {layer.__class__} expected {expected_class}"
def test_embedding_layer():
embedding_layer = EmbeddingLayer()
neural_network = NeuralNetwork([
FeedForwardLayer(5),
FeedForwardLayer(3),
embedding_layer
])
expected_classes = [
FeedForwardLayer,
FeedForwardToFeedForward,
FeedForwardLayer,
FeedForwardToEmbedding,
EmbeddingLayer
]
assert_classes_match(neural_network.all_layers, expected_classes)
def test_remove_layer():
embedding_layer = EmbeddingLayer()
neural_network = NeuralNetwork([
FeedForwardLayer(5),
FeedForwardLayer(3),
embedding_layer
])
expected_classes = [
FeedForwardLayer,
FeedForwardToFeedForward,
FeedForwardLayer,
FeedForwardToEmbedding,
EmbeddingLayer
]
assert_classes_match(neural_network.all_layers, expected_classes)
print("before removal")
print(list(neural_network.all_layers))
neural_network.remove_layer(embedding_layer)
print("after removal")
print(list(neural_network.all_layers))
expected_classes = [
FeedForwardLayer,
FeedForwardToFeedForward,
FeedForwardLayer,
]
print(list(neural_network.all_layers))
assert_classes_match(neural_network.all_layers, expected_classes)
class FeedForwardNeuralNetworkScene(Scene):
def construct(self):
nn = FeedForwardNeuralNetwork([3, 5, 3])
self.play(Create(nn))
self.play(Wait(3))
class NeuralNetworkScene(Scene):
"""Test Scene for the Neural Network"""
def construct(self):
# Make the Layer object
layers = [
FeedForwardLayer(3, title="Title Test"),
FeedForwardLayer(5),
FeedForwardLayer(3)
]
nn = NeuralNetwork(layers)
nn.move_to(ORIGIN)
# Make Animation
self.add(nn)
#self.play(Create(nn))
forward_propagation_animation = nn.make_forward_pass_animation(run_time=5, passing_flash=True)
self.play(forward_propagation_animation)
class GrayscaleImageNeuralNetworkScene(Scene):
def construct(self):
image = Image.open('images/image.jpeg')
numpy_image = np.asarray(image)
# Make nn
layers = [
FeedForwardLayer(3),
FeedForwardLayer(5),
FeedForwardLayer(3),
FeedForwardLayer(6),
ImageLayer(numpy_image, height=1.4)
]
nn = NeuralNetwork(layers)
nn.scale(1.3)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
self.play(nn.make_forward_pass_animation(run_time=5))
self.play(nn.make_forward_pass_animation(run_time=5))
class ImageNeuralNetworkScene(Scene):
def construct(self):
image = Image.open('../assets/gan/real_image.jpg')
numpy_image = np.asarray(image)
# Make nn
layers = [
FeedForwardLayer(3),
FeedForwardLayer(5),
FeedForwardLayer(3),
FeedForwardLayer(6),
ImageLayer(numpy_image, height=1.4)
]
nn = NeuralNetwork(layers)
nn.scale(1.3)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
self.play(nn.make_forward_pass_animation(run_time=5))
self.play(nn.make_forward_pass_animation(run_time=5))
class EmbeddingNNScene(Scene):
def construct(self):
embedding_layer = EmbeddingLayer()
neural_network = NeuralNetwork([
FeedForwardLayer(5),
FeedForwardLayer(3),
embedding_layer,
FeedForwardLayer(3),
FeedForwardLayer(5)
])
self.play(Create(neural_network))
self.play(neural_network.make_forward_pass_animation(run_time=5))
class RecursiveNNScene(Scene):
def construct(self):
nn = NeuralNetwork([
NeuralNetwork([
FeedForwardLayer(3),
FeedForwardLayer(2)
]),
NeuralNetwork([
FeedForwardLayer(2),
FeedForwardLayer(3)
])
])
self.play(Create(nn))
class LayerInsertionScene(Scene):
def construct(self):
pass
class LayerRemovalScene(Scene):
def construct(self):
image = Image.open('images/image.jpeg')
numpy_image = np.asarray(image)
layer = FeedForwardLayer(5)
layers = [
ImageLayer(numpy_image, height=1.4),
FeedForwardLayer(3),
layer,
FeedForwardLayer(3),
FeedForwardLayer(6)
]
nn = NeuralNetwork(layers)
self.play(Create(nn))
remove_animation = nn.remove_layer(layer)
print("before remove")
self.play(remove_animation)
print(nn)
print("after remove")
class LayerInsertionScene(Scene):
def construct(self):
image = Image.open('images/image.jpeg')
numpy_image = np.asarray(image)
layers = [
ImageLayer(numpy_image, height=1.4),
FeedForwardLayer(3),
FeedForwardLayer(3),
FeedForwardLayer(6)
]
nn = NeuralNetwork(layers)
self.play(Create(nn))
layer = FeedForwardLayer(5)
insert_animation = nn.insert_layer(layer, 4)
self.play(insert_animation)
print(nn)
print("after remove")
if __name__ == "__main__":
"""Render all scenes"""
# Feed Forward Neural Network
ffnn_scene = FeedForwardNeuralNetworkScene()
ffnn_scene.render()
# Neural Network
nn_scene = NeuralNetworkScene()
nn_scene.render()